

Automation Control Equipment

Main Catalog Edition 7/2014

Locate and Eliminate Disturbing Vibration

Vibration Isolation

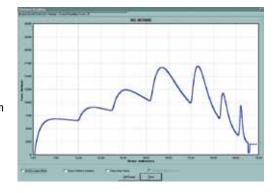
- Free App for iPhone, iPad and iPod Touch
- 3-Axis measurement system
- **Simple & comprehensible menu**
- Immediate product recommendation
- Available in English, German and French

www.vibrochecker.com

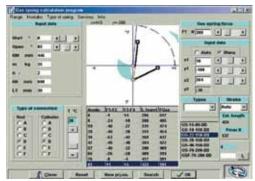
1m MC4575M-2 8000 H

With our user-friendly calculation program on the internet you can select the right product - online or via download of the program. The CAD data is available in all standard formats in 2D and 3D.

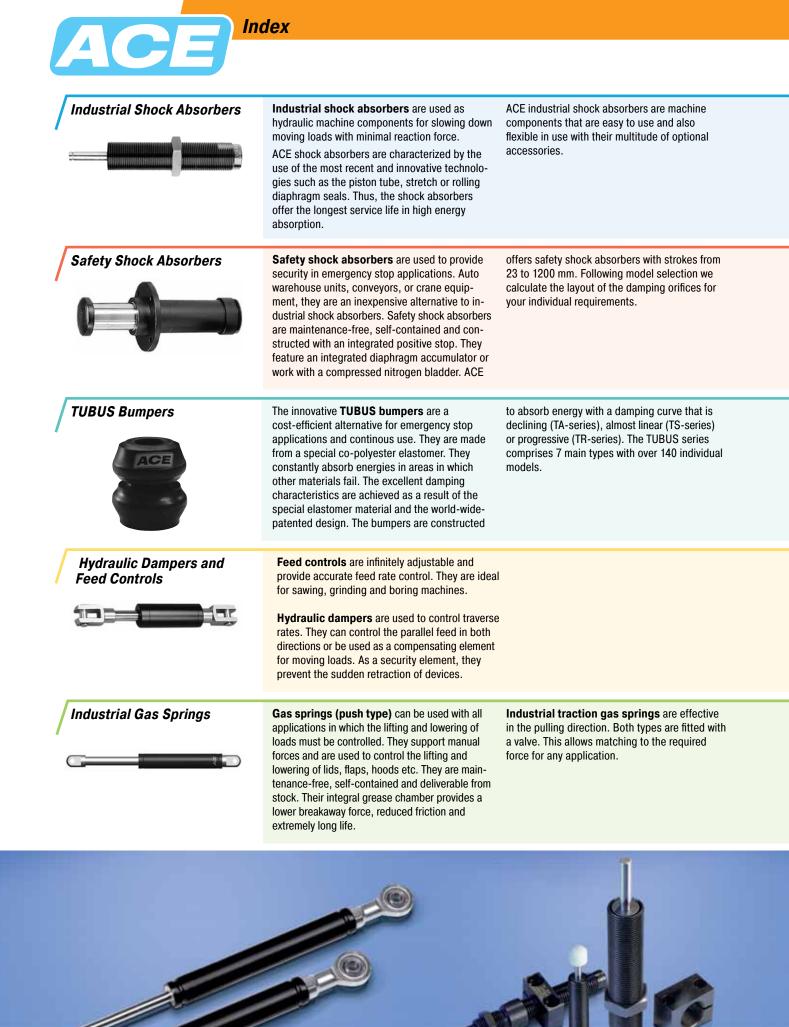
Our specialist engineers create


On this page we would like to present our free additional services. We provide these services to assist you from identification of the problem to the solution.

Tell us about your requirements.


Take advantage of our more than 40 years of expert knowledge in damping technology.

Furthermore: ACE service support and products are available in more than 40 countries worldwide.


detailed technical solutions for you including assembly suggestions and details on machine loads, brake time and workload etc.

Certified Quality

ACE products are exclusively manufactured from high quality and environmentally compatible materials. With permanent quality monitoring and the performance of test programs, a constant high quality can be guaranteed. ACE pursues continual improvement in all areas in order to arrange material and energy consumption, the production of damaging substances and recycling or disposal of end products as gently on resources as possible. It is important to us to keep the strain on the environment as low as possible and simultaneously improve our services. With ongoing optimization of end products, we also give our customers the option of designing their products to be smaller, more effective and more energysaving.

All rights to the production, trade names, design and illustrations of this catalog are reserved. No part of this publication may be reproduced, copied or printed without permission; violations will be prosecuted. Construction, dimensions and specifications of ACE products are subject to change.

Your advantages: • Safe and reliable production • High service life of the machine • Lightweight and low cost construction • Low operating costs • Quiet and economic machines • Low machine load • Increased profits	Design, function, calculation and capacity chart MC5 to 600 SC190 to 925, SC ² Series and SC-HC Series MA30 to 900 and AS3/8x1 Accessories M5 to M25 MAGNUM-Series Special shock aborbers, air/oil tanks CA2 to 4 and A1 ½ to 3 Installation and application examples	8 - 15 16 - 19 20 - 25 26 - 29 30 - 37 38 - 47 48 - 49 50 - 55 56 - 59	
Your advantages: • Optimal machine protection • Lightweight and low cost construction • Maximum stopping distance • State-of-the-art damping technology • Almost universally applicable	SCS33 to 64 SCS38 to 63 CB63 to 160 EB63 to 160 General instructions Application Examples	60 - 63 64 - 67 68 - 71 72 - 75 76 77	
 Your advantages: Inexpensive Small and light construction Space-saving design Production safety Usable with temperatures from -40 °F to 120 °F Resistant to grease, oils, petrol, microbes, chemicals, sea-water 	TA12 to 116 TS14 to 107 TR29 to 100 TR-H30 to 102 TR-L29 to 188 TR-HD42 to 117 TC64 to 176 TUBUS special products and applications TUBUS bumpers – overview and application examples	78 - 79 80 - 81 82 - 83 84 - 85 86 - 87 88 - 89 NEW 90 - 91 92 - 93 NEW 94 - 95	
 Your advantages with feed controls: Sensitive adjustment Immediately deliverable from stock Stick-slip-free Your advantages with hydraulic dampers: Constant speed rates Standard version, in stock Easy to mount 	VC25, MA and MVC Application examples DVC HBD-15 to 40 HB-12 to 70 Tow bar snubber series HSN and SN Adjustment instructions HBD/HB Application examples	96 - 99 99 100 - 101 102 - 106 107 - 113 114 - 115 NEW 116 117	
 Your advantages: Immediately deliverable from stock with valve Individual filling by valve technology Calculation program for individual design Maintenance-free Extensive range of fittings available 	Function, calculation and mounting tips Gas springs (push type) GS-8 to 70 and GST-40 Stainless steel gas springs (push type) - V4A Stainless steel gas springs (push type) - V2A Application examples Industrial traction gas springs GZ-15 to 40 Stainless steel traction gas springs Accessories for gas springs and hydraulic dampers, Notes Distributor stock locations	118 - 121 122 - 133 134 - 142 143 - 147 148 149 - 153 154 - 161 162 - 169 170 - 171	

www.acecontrols.com

ACE Industrial Shock Absorbers

ACE industrial shock absorbers are high quality dampers for smooth deceleration in end position of automatic processes. High energy absorption capacity and solid construction guarantee a long lifespan; including in harsh environments. The absorbers are available in various sizes to slow down masses weighing just a few ounces to more than 225,000 pounds.

Features

- · Increase in production
- · Long lifespan of the machine
- Simple, inexpensive construction
- Quiet, energy saving machines
- Available in diameters from 0.2 in to 7.5 in
- Delivery in 24 hours

ACE Safety Shock Absorbers

ACE safety shock absorbers are designed for emergency-stop situations in industrial and crane applications. They are individually tailored to the relevant application for emergency-stop.

Application examples

- · Portal cranes
- Conveyor systems
- Automated storage and retrieval systems
- · Harbour cranes and bridges
- Floodgates

ACE-TUBUS Bumpers

With the kind permission of Worthmann Maschinenbau GmbH

ACE-TUBUS bumpers are the alternative for applications in which the mass does not have to be stopped in an exact position or the energy does not have to be 100% removed.

Features

- · Low weight
- Small installation size
- · Inexpensive safety element
- Simple assembly •
- Up to 73 % energy absorption
- · For use in clean rooms

www.acecontrols.com

ACE Hydraulic Dampers and Feed Controls

ACE hydraulic dampers and feed controls help you precisely regulate critical feeds in the wood, plastic, metal and glass industry.

Features

- Constant speed
- Precise control
- Control in both directions
- Strokes up to 31.5 inches
- Forces up to 11,241 lbs
- · Adjustable
- · Delivery in 24 hours

ACE Industrial Gas Springs

ACE gas springs support muscle power and help you with the controlled lifting and lowering of lids, hoods, flaps and machine screens.

Features

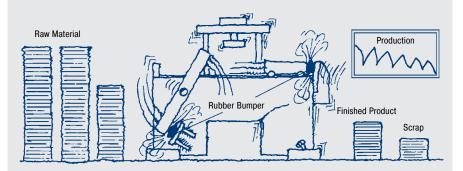
- · Reduction of the muscle power required
- Large forces in small units
- · Controlled input and output speeds
- Controlled movement using just one finger
- Increased safety
- Adjustable
- · Delivery in 24 hours

Virtually all manufacturing processes involve movement of some kind. In production machinery this can involve linear transfers, rotary index motions, fast feeds etc. At some point these motions change direction or come to a stop.

Any moving object possesses kinetic energy as a result of its motion and if the object changes direction or is brought to rest, the dissipation of this kinetic energy can result in destructive impact forces within the structural and operating parts of the machine.

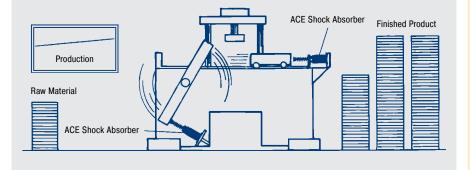
Kinetic energy increases as the square of the speed and the heavier the object, or the faster it travels, the more energy it has. An increase in production rates is only possible by dissipating this kinetic energy smoothly and thereby eliminating destructive deceleration forces.

Older methods of energy absorption such as rubber buffers, springs, hydraulic dashpots and cylinder cushions do not provide this required smooth deceleration characteristic – they are non linear and produce high peak forces at some point during their stroke.


The optimum solution is achieved by an **ACE industrial shock absorber**. This utilizes a series of metering orifices spaced throughout its stroke length and provides a **constant linear deceleration** with the lowest possible reaction force in the shortest stopping time.

ACE Controlled Linear Deceleration!

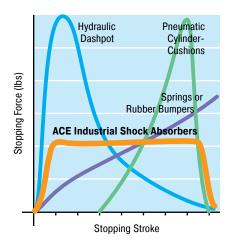
ACE Wine Drop Display Property An ACE shock absorber decelerates a free-falling 100 lb weight so effectively that the contents of the glass don't even spill.


Stopping with Rubber Bumpers, Springs, Dashpots or Cylinder Cushions

Result

- · Loss of production
- · Machine damage
- · Increased maintenance costs
- Increased operating noise
- Higher machine construction costs

Stopping with ACE Shock Absorbers



Your Advantages

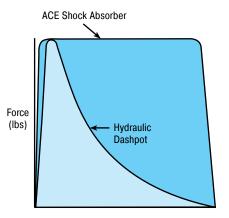
- · Increased production
- · Increased operating life of the machine
- Improved machine efficiency
- Reduced construction costs of the machine
- Reduced maintenance costs
- Reduced noise pollution
- · Reduced energy costs

Comparison

1. Hydraulic Dashpot (High stopping force at start of the stroke).

With only one metering orifice the moving load is abruptly slowed down at the start of the stroke. The braking force rises to a very high peak at the start of the stroke (giving high shock loads) and then falls away rapidly.

- 2. Springs and Rubber Bumpers (High stopping forces at end of stroke). Besides having high forces at full compression, they also store energy rather than dissipating it causing the load to bounce back again.
- 3. Air Bumpers, Pneumatic Cylinder Cushions (High stopping force at end of stroke).


Due to the compressibility of air these have a sharply rising force characteristic towards the end of the stroke. The majority of the energy is absorbed near the end of the stroke.

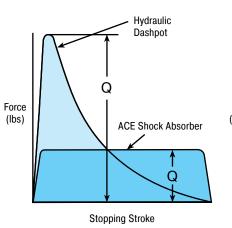
4. ACE Industrial Shock Absorbers (Uniform stopping force through the entire stroke). The moving load is smoothly and gently brought to rest by a constant resisting force throughout the entire shock absorber stroke. The load is decelerated with the lowest possible force in the shortest possible time eliminating damaging force peaks and shock damage to machines and equipment. This is a linear deceleration force stroke curve and is the curve provided by ACE industrial shock absorbers. In addition they considerably reduce noise pollution.

Energy Capacity

Reaction Force (Stopping Force)

Stopping Time

Stopping Stroke


Assumption: Same maximum reaction force.

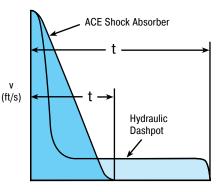
Result:

The ACE shock absorber can absorb considerably more energy (represented by the area under the curve).

Your advantage:

By installing an ACE shock absorber production rates can be more than **doubled without increasing deceleration forces** or reaction forces on the machine.

Assumption:


Same energy absorption (area under the curve).

Result:

The reaction force transmitted by the ACE shock absorber is very much lower.

Your advantage:

By installing the ACE shock absorber the machine wear and maintenance can be drastically reduced.

Stopping Time

Assumption: Same energy absorption.

Result:

The ACE shock absorber stops the moving load in a much shorter time.

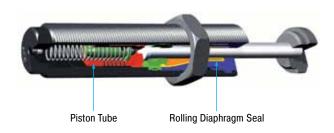

Your advantage:

By installing an ACE shock absorber cycle times are reduced giving much higher production rates.

9

Comparison of Design

10


Standard Design of ACE Miniature Shock Absorbers

These miniature shock absorbers have a static pressure chamber. The dynamic piston forces the hydraulic oil to escape through the metering orifices.

The displaced oil is absorbed by the accumulator.

A static seal system containing a U-cup and a wiper seals the shock absorber internally.

The outer body and the pressure chamber are fully machined from solid with closed rear end.

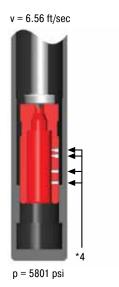
ACE Design for Higher Demands

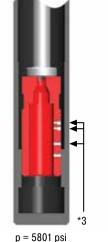
ACE Piston Tube Technology:

v = 1.64 ft/sec

The increased volume of displaced hydraulic oil provides 200% more energy absorption capacity in comparison with the standard design. The wider effective weight range enables these dampers to cover a much wider range of applications. The piston and inner tube are combined into a single component.

ACE Stretch and Rolling Diaphragm System:

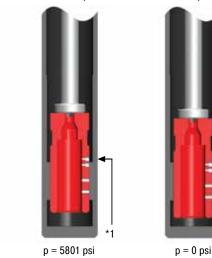

By the proven dynamic ACE rolling diaphragm seal system the shock absorber becomes hermetically sealed and provides up to 25 million cycles. The rolling diaphragm seal allows direct installation into the end cover of pneumatic cylinders (up to 101,5 psi).


These technologies are used separately or combined on the MC150 to MC600, SC²25M to SC²650 and on the model MA150.

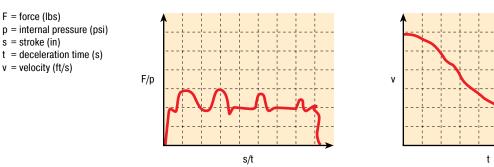
v = 0 ft/sec

*0

General Function


F = force (lbs)

s = stroke (in)


v = velocity (ft/s)

v = 4.92 ft/sec

* The load velocity reduces continously as you travel through the stroke due to the reduction in the number of metering orifices (*) in action. The internal pressure remains essentially constant and thus the force vs. stroke curve remains linear

ACE shock absorbers provide linear deceleration and are therefore superior to other kinds of damping elements. It is easy to calculate around 90% of applications knowing only the following 5 parameters:

Key to symbols used

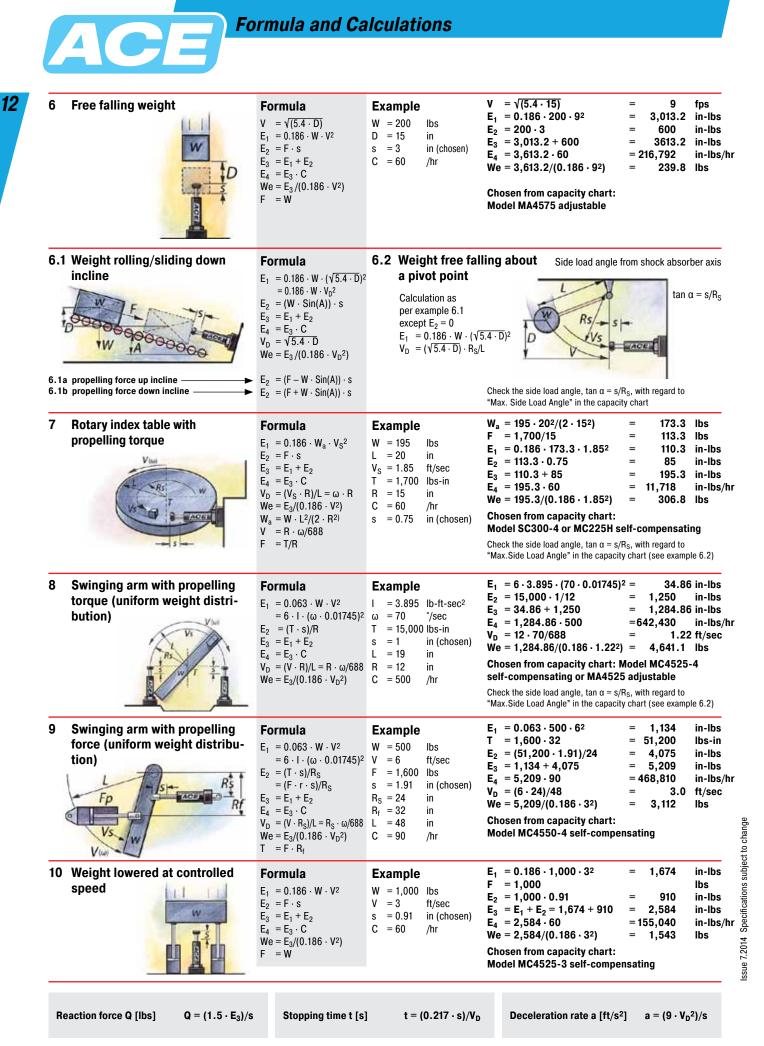
E ₁	Kinetic energy per cycle	in-lbs
E_2	Propelling force energy per cycle	in-lbs
E_3	Total energy per cycle $(E_1 + E_2)$	in-lbs
¹ E ₄	Total energy per hour ($E_3 \cdot C$)	in-lbs/hr
We	Effective weight	lbs
W	Weight to be decelerated	lbs
n	Number of shock absorbers (in parallel)	
2 V	Velocity at impact	ft/sec
$^{2}V_{D}$	Impact velocity at shock absorber	ft/sec
ω	Angular velocity at impact	°/sec
F	Propelling force	lbs
С	Cycles per hour	/hr
Нр	Motor power	hp

 1 All mentioned values of E_4 in the capacity charts are only valid for room temperature. There are reduced values at higher temperature ranges.

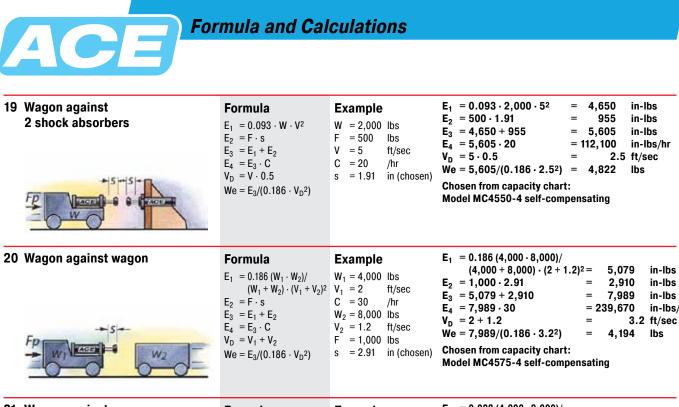
 2 V or V_D is the final impact velocity of the weight. With accelerating motion the final impact velocity can be 1.5 to 2 times higher than the average. Please take this into account when calculating kinetic energy.

 \mathbf{V}_{D} Impact velocity at shock absorber (ft/sec) 2. 3. **Propelling force** F (lbs) Cycles per hour С 4. (/hr) 5. Number of absorbers in parallel n Stall torque factor (normally 2.5) 3 ST 1 to 3 Т Propelling torque lbs-in L Moment of Inertia lb-ft-sec² Acceleration due to gravity = 32.2 ft/s² ft/s² g Ď Drop height excl. shock absorber stroke in Shock absorber stroke in S L/R/r Radius in Q Reaction force lbs Coefficient of friction μ Deceleration time t sec а Deceleration ft/s² Side load angle α Angle of incline β

1. Weight to be decelerated


 ³ ST ≙ relation between starting torque and running torque of the motor (depending on the design)

In all the following examples the choice of shock absorbers made from the capacity chart is based upon the values of (E_3) , (E_4) , (We) and the desired shock absorber stroke (s)


when calculating kinetic energy.		stroke (s).	
1 Weight without propelling force	Formula $E_1 = 0.186 \cdot W \cdot V^2$ $E_2 = F \cdot s$ $E_3 = E_1 + E_2$ $E_4 = E_3 \cdot C$ $We = E_3 / (0.186 \cdot V^2)$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2 Weight with propelling force Fp w v v v v v v v v v v v v	Formula $E_1 = 0.186 \cdot W \cdot V^2$ $E_2 = F \cdot s$ $E_3 = E_1 + E_2$ $E_4 = E_3 \cdot C$ $We = E_3 / (0.186 \cdot V^2)$ $E_2 = (F - W) \cdot s$ $E_2 = (F + W) \cdot s$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
3 Weight with motor drive	Formula $F = 550 \cdot ST \cdot Hp/V$ $E_1 = 0.186 \cdot W \cdot V^2$ $E_2 = F \cdot S$ $E_3 = E_1 + E_2$ $E_4 = E_3 \cdot C$ $We = E_3 / (0.186 \cdot V^2)$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{rcl} F &= 550 \cdot 2.5 \cdot 2/1 &=& 2,750 & lbs \\ E_1 &= 0.186 \cdot 2100 \cdot 1^2 &=& 390.6 & in-lbs \\ E_2 &= 2,750 \cdot 2 &=& 5,500 & in-lbs \\ E_3 &= 390.6 + 5,500 &=& 5,890.6 & in-lbs \\ E_4 &= 5,890.6 \cdot 20 &=& 117,812 & in-lbs/h \\ We &= 5,890.6/(0.186 \cdot 1^2) &=& 31,670 & lbs \\ Chosen from capacity chart: \\ Model ML6450 & or MC6450-4 & self-compensating \\ lude the rotational energy of motor, coupling and gearbox \\ \end{array}$
4 Weight on driven rollers	$\begin{array}{l} \textbf{Formula} \\ F &= W \cdot \mu \\ E_1 &= 0.186 \cdot W \cdot V^2 \\ E_2 &= F \cdot s \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot C \\ We &= E_3 / (0.186 \cdot V^2) \end{array}$	$\begin{array}{l} \textbf{Example} \\ W &= 250 lbs \\ V &= 2.5 ft/sec \\ \mu &= 0.2 in \\ s &= 1 in \ (chosen) \\ C &= 180 /hr \end{array}$	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
5 Swinging weight with propelling force	$\begin{array}{l} \textbf{Formula} \\ E_1 &= 0.186 \cdot W \cdot V^2 \\ &= 0.186 \cdot I \cdot \omega^2 \\ E_2 &= T \cdot s/R \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot C \\ V_D &= V \cdot R/L = \omega \cdot R \\ We &= E_3/(0.186 \cdot V_D^2) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

w

(lbs)

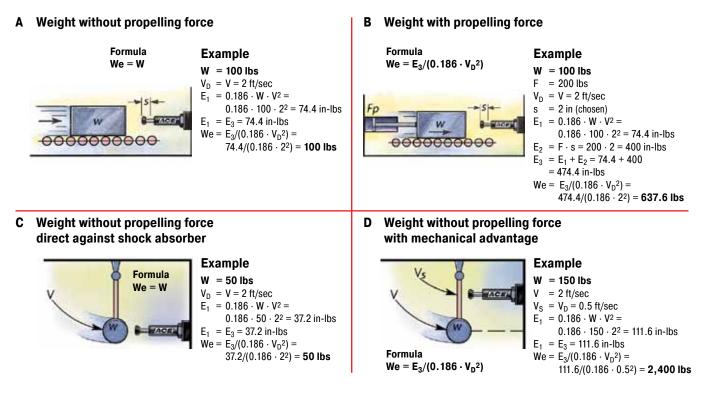
Approximate values assuming correct adjustment. Add safety margin if necessary. (Exact values will depend upon actual application data and can be provided on request.)

13

in-lbs

in-lbs

in-lbs


lbs

in-lbs/hr

21 Wagon against wagon	Formula	Example	E ₁ = 0.093 (4,000 · 8,000)/
2 shock absorbers	$\begin{array}{rl} E_1 &= 0.093 \; (W_1 \cdot W_2) / \\ & (W_1 + W_2) \cdot (V_1 + V_2)^2 \\ E_2 &= F \cdot s \end{array}$	$W_1 = 4,000$ lbs $V_1 = 2$ ft/sec C = 30 /hr	$(4,000 + 8,000) \cdot (2 + 1.2)^2 = 2,540$ in-lbs $E_2 = 1,000 \cdot 1.91 = 1,910$ in-lbs $E_3 = 2,540 + 1,910 = 4,450$ in-lbs
	$E_{3} = E_{1} + E_{2}$ $E_{4} = E_{3} \cdot C$ $V = (V_{1} + V_{2})/2$ $We = E_{3}/(0.186 \cdot V_{D}^{2})$	$W_2 = 8,000$ lbs $V_2 = 1.2$ ft/sec F = 1,000 lbs s = 1.91 in (chosen)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Note: When using several shock absorbers in parallel, the values (E₃), (E₄) and (We) are divided according to the number of units used.

Effective Weight (We)

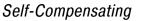
The effective weight (We) can either be the same as the actual weight (examples A and C), or it can be an imaginary weight representing a combination of the propelling force or lever action plus the actual weight (examples B and D).

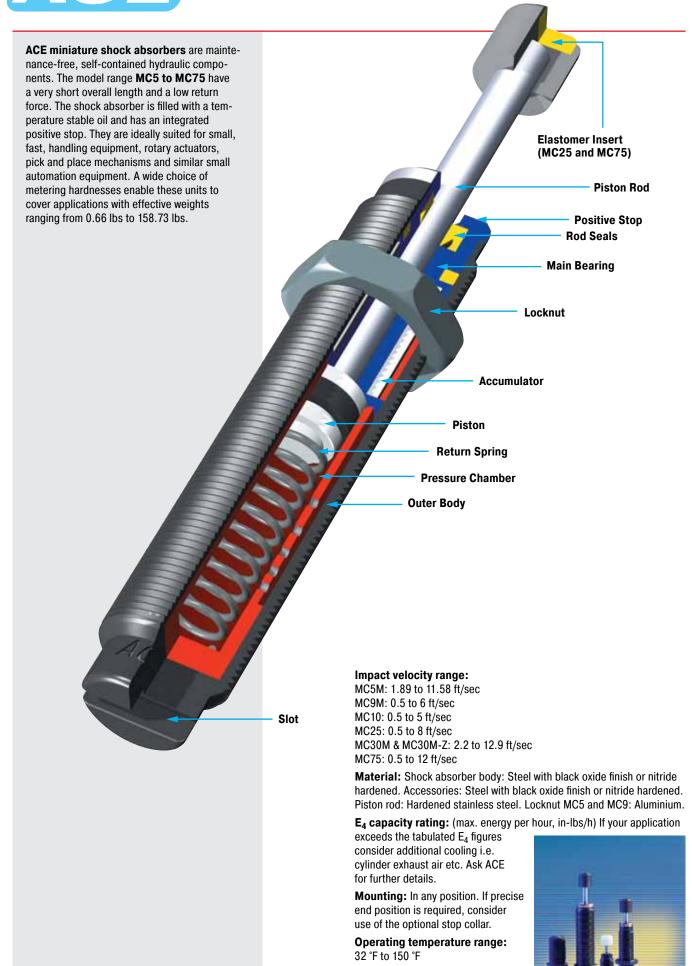
14

Shock Absorber Capacity Chart

Self-Compensating Shock Absorbers

Capacity Chart		En anno 0	y Capacity Effective Weight We		Supacity C	Capacity Chart		Effective Weight We		1	
		Energy Capacity		weight We mpensating				Energy Capacity		e Weight We mpensating	
Type Part Number	Stroke inches	E ₃ in Ibs/Cycle	We min. Ibs	We max. Ibs	Page	Type Part Number	Stroke inches	E ₃ in Ibs/Cycle	We min. Ibs	We max. Ibs	Pa
AC5M-1	0.16	6	0.22	2.0	17	MC4525-0	0.91	3,000	15	60	4
/C5M-2	0.16	6	1.7	4.9	17	MC4525-1	0.91	3,000	50	200	4
/C5M-3	0.16	6	4.4	11.1	17	MC4525-2	0.91	3,000	170	680	4
/C9M-1	0.20	9	1.35	7.0	17	MC4525-3	0.91	3,000	575	2,300	4
/C9M-2	0.20	9	1.75	9.0	17	MC4525-4	0.91	3,000	1,950	7,800	4
AC10ML	0.20	11	0.75	6.0	17	MC4550-0	1.91	6,000	29	119	4
AC10MH	0.20	11	1.5	11	17	MC4550-1	1.91	6,000	100	400	4
1C30M-1 1C30M-2	0.32	31 31	1.0 3.97	4.30 11.90	17 17	MC4550-2 MC4550-3	1.91 1.91	6,000 6,000	340 1,150	1,360 4,600	
1C30M-2 1C30M-3	0.32	31	11.02	33.07	17	MC4550-5 MC4550-4	1.91	6,000	3,900	4,000	
1C25	0.26	20	4	12	17	MC4575-0	2.91	9,000	44	176	
IC25H	0.26	20	10	30	17	MC4575-1	2.91	9,000	150	600	
1C25L	0.26	20	1.5	5	17	MC4575-2	2.91	9,000	510	2,040	
IC75-1	0.40	75	0.5	2.5	17	MC4575-3	2.91	9,000	1,730	6,920	
IC75-2	0.40	75	2	14	17	MC4575-4	2.91	9,000	5,850	23,400	
IC75-3	0.40	75	6	80	17	MC6450-0	1.91	15,000	77	309	
IC75-4	0.40	75	55	160	17	MC6450-1	1.91	15,000	300	1,200	
IC150	0.50	175	2	22	19	MC6450-2	1.91	15,000	1,020	4,080	
IC150H	0.50	175	20	200	19	MC6450-3	1.91	15,000	3,460	13,840	
C150H2	0.50	175	150	450	19	MC6450-4	1.91	15,000	11,700	46,800	
C150H3	0.50	175	400	900	19	MC64100-0	3.91	30,000	154	617	
C225	0.50	360	5	55	19	MC64100-1	3.91	30,000	600	2,400	
C225H	0.50	360	50	500	19	MC64100-2	3.91	30,000	2,040	8,160	
C225H2	0.50	360	400	2,000	19	MC64100-3	3.91	30,000	6,920	27,680	
C225H3	0.50	360	1,800	4,000	19	MC64100-4	3.91	30,000	23,400	93,600	
C600	1.00	1,200	20	300	19	MC64150-0	5.91	45,000	220	1,014	
C600H	1.00	1,200	250	2,500	19	MC64150-1	5.91	45,000	900	3,600	
C600H2	1.00	1,200	880	5,000	19	MC64150-2	5.91	45,000	3,060	12,240	
C600H3	1.00	1,200	4,800	10,000	19	MC64150-3	5.91	45,000	10,380	41,520	
25M-5	0.32	89	2.2	11	23	MC64150-4	5.91	45,000	35,100	140,400	
25M-6	0.32	89	9	97	23	CA2X2-1	2.00	32,000	1,600	4,800	
25M-7	0.32 0.39	89 142	93 2.2	1,100 18	23 23	CA2X2-2 CA2X2-3	2.00 2.00	32,000 32,000	4,000	12,000 30,000	
C75M-5 C75M-6	0.39	142	15	172	23	CA2X2-3	2.00	32,000	10,000 25,000	75,000	
C75M-7	0.39	142	165	1,760	23	CA2X4-1	4.00	64,000	3,200	9,600	
C190-0	0.63	225	1.54	8.82	23	CA2X4-1	4.00	64,000	8,000	24,000	
C190-1	0.63	225	3	15	21	CA2X4-3	4.00	64,000	20,000	60,000	
C190-2	0.63	225	8	40	21	CA2X4-4	4.00	64,000	50,000	150,000	
C190-3	0.63	225	20	100	21	CA2X6-1	6.00	96,000	4,800	14,400	
C190-4	0.63	225	50	225	21	CA2X6-2	6.00	96,000	12,000	36,000	
C190M-5	0.47	274	4	35	23	CA2X6-3	6.00	96,000	30,000	90,000	
C190M-6	0.47	274	29	309	23	CA2X6-4	6.00	96,000	75,000	225,000	
C190M-7	0.47	274	300	3,400	23	CA2X8-1	8.00	128,000	6,400	19,200	
C300-0	0.75	300	1.54	8.82	21	CA2X8-2	8.00	128,000	16,000	48,000	
2300-1	0.75	300	3	18	21	CA2X8-3	8.00	128,000	40,000	120,000	
2300-2	0.75	300	10	60	21	CA2X8-4	8.00	128,000	100,000	300,000	
2300-3	0.75	300	30	180	21	CA2X10-1	10.00	160,000	8,000	24,000	
2300-4	0.75	300	70	450	21	CA2X10-2	10.00	160,000	20,000	60,000	
C300-5	0.59	650	25	100	23	CA2X10-3	10.00	160,000	50,000	150,000	
2300-6	0.59	650	75	300	23	CA2X10-4	10.00	160,000	125,000	375,000	
2300-7	0.59	650	200	400	23	CA3X5-1	5.00	125,000	6,400	19,200	
2300-8	0.59	620	300	1,500	23	CA3X5-2	5.00	125,000	16,000	48,000	
300-9	0.59	620	700	4,300	23	CA3X5-3	5.00	125,000	40,000	120,000	
650-0	1.00	650	5.07	30.86	21	CA3X5-4	5.00	125,000	100,000	300,000	
650-1	1.00	650	17	100	21	CA3X8-1	8.00	200,000	10,240	30,720	
650-2	1.00	650	50	300	21	CA3X8-2	8.00	200,000	25,600	76,800	
C650-3	1.00	650	150	900	21	CA3X8-3	8.00	200,000	64,000	192,000	
2650-4	1.00	650	450	2,600	21	CA3X8-4	8.00	200,000	160,000	480,000	
2650-5	0.91	1,860	50	250	23	CA3X12-1	12.00	300,000	15,360	46,080	
2650-6	0.91	1,860	200	800	23	CA3X12-2	12.00	300,000	38,400	115,200	
C650-7	0.91	1,860	700	2,400	23	CA3X12-3	12.00	300,000	96,000	288,000	
C650-8	0.91	1,860	1,700	5,800	23	CA3X12-4	12.00	300,000	240,000	720,000	
C650-9	0.91	1,860	4,000	14,000	23	CA4X6-3	6.00	420,000	8,000	19,000	
025-0	1.58	975	10	65	21	CA4X6-5	6.00	420,000	19,000	41,000	
C925-1	1.58	975	30	200	21	CA4X6-7	6.00	420,000	41,000	94,000	
025-2	1.58	975	90	600	21	CA4X8-3	8.00	560,000	11,000	25,000	
025-3	1.58	975	250	1,600	21	CA4X8-5	8.00	560,000	25,000	55,000	
0225-4	1.58	975	750	4,600	21	CA4X8-7	8.00	560,000	55,000	125,000	
C3325-0	0.91	1,350	7	24	40	CA4X16-3	16.00	1,120,000	22,000	50,000	
C3325-1	0.91	1,350	20	80	40	CA4X16-5	16.00	1,120,000	50,000	110,000	
C3325-2 C3325-3	0.91 0.91	1,350 1,350	68 230	272 920	40 40	CA4X16-7	16.00	1,120,000	110,000	250,000	
C3325-3 C3325-4	0.91	1,350	230 780	920 3,120	40						
C3325-4 C3350-0	1.91	2,700	11	3,120 49	40						
C3350-0 C3350-1	1.91	2,700	40	49 160	40						
C3350-1 C3350-2	1.91	2,700	136	544	40						
C3350-2 C3350-3	1.91	2,700	460	544 1,840	40						
C3350-3	1.91	2,700	1,560	6,240	40						


Shock Absorber Capacity Chart

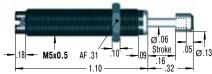

Adjustable Shock Absorbers

Capacity Chart						
		Max. Energy (Capacity, in-Ibs	Effectiv	e Weight We	
			Self-Contained	Ad	justable	
Type Part Number	Stroke inches	E ₃ in Ibs/Cycle	E ₄ in Ibs/h	We min. Ibs	We max. Ibs	Page
MA30M	0.32	31	50,000	0.5	31	27
MA50M	0.28	50	120,000	10	45	27
MA35	0.40	35	53,000	13	125	27
MA150	0.50	200	300,000	2	240	27
MA225	0.75	300	400,000	5	500	27
MA600	1.00	600	600,000	20	3,000	27
AS3/8X1	1.00	600	600,000	10	1,250	29
MA900	1.58	900	800,000	30	4,500	27
MA3325	0.91	1,500	670,000	20	3,800	40
ML3325	0.91	1,500	670,000	661	110,231	40
MA3350	1.91	3,000	760,000	28	5,400	40
ML3350	1.91	3,000	760,000	1,102	176,370	40
MA4525	0.91	3,450	950,000	95	22,000	42
ML4525	0.91	3,450	950,000	6,614	242,508	42
MA4550	1.91	6,900	1,000,000	150	32,000	42
ML4550	1.91	6,900	1,000,000	11,023	396,832	42
MA4575	2.91	10,350	1,300,000	155	33,000	42
ML6425	0.91	9,000	1,100,000	15,432	661,386	44
MA6450	1.91	18,000	1,300,000	480	110,000	44
ML6450	1.91	18,000	1,300,000	24,251	1,102,310	44
MA64100	3.91	36,000	1,700,000	600	115,000	44
MA64150	5.91	54,000	2,200,000	730	175,000	44
A1½X2	2.00	21,000	3,200,000	430	70,000	52
A11/2X31/2	3.50	36,750	5,600,000	480	80,000	52
A11/2X5	5.00	52,500	8,000,000	500	90,000	52
A11/2X61/2	6.50	63,250	10,400,000	680	100,000	52
A2X2	2.00	32,000	9,600,000	560	170,000	53
A2X4	4.00	80,000	12,000,000	510	160,000	53
A2X6	6.00	120,000	14,400,000	570	190,000	53
A2X8	8.00	170,000	16,800,000	580	200,000	53
A2X10	10.00	210,000	19,200,000	720	250,000	53
A3X5	5.00	140,000	20,000,000	1,050	340,000	54
A3X8	8.00	250,000	32,000,000	1,200	400,000	54
A3X12	12.00	390,000	48,000,000	1,350	450,000	54

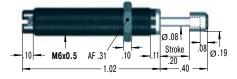
15

Miniature Shock Absorbers MC5 to MC75

On request: Corrosion-resistant Weartec Plus outer tube coating is standard. Other coatings and construction materials are available


upon request.

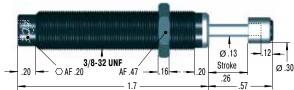
Miniature Shock Absorbers MC5 to MC75


Self-Compensating

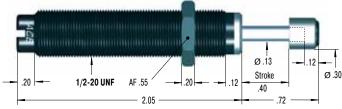
MC5M

Standard version without button for MC5, MC9 and MC10. Accessories, mounting, installation ... see pages 32 to 37.

MC9M


Standard version without button for MC5, MC9 and MC10. Accessories, mounting, installation ... see pages 32 to 37.

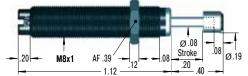
MC30M for use on new installations


Accessories, mounting, installation ... see pages 32 to 37.

MC25

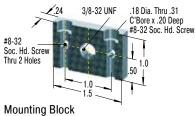
Accessories, mounting, installation ... see pages 32 to 37.

MC75

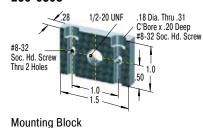

Accessories, mounting, installation ... see pages 33 to 37.

Available without rod end button on request.

Capacity Ch	art								
	Max. Energ	y Capacity	Effective	Weight We					
			Self-Corr	pensating					
Туре	E ₃	E ₄	We min.	We max.	Min.	Max.	Rod	¹ Max. Side	Weight
Part Number	in-lbs/Cycle	in-Ibs/h	lbs	lbs	Return Force Ibs	Return Force Ibs	Reset Time sec	Load Angle	lbs
MC5M-1	6	18,000	0.22	2.0	0.44	1.15	0.2	2	0.007
MC5M-2	6	18,000	1.7	4.9	0.44	1.15	0.2	2	0.007
MC5M-3	6	18,000	4.4	11.1	0.44	1.15	0.2	2	0.007
MC9M-1	9	18,000	1.35	7.0	0.31	0.85	0.3	2	0.01
MC9M-2	9	18,000	1.75	9.0	0.31	0.85	0.3	2	0.01
MC10ML	11	35,000	0.75	6.0	0.5	1.0	0.2	3	0.02
MC10MH	11	35,000	1.5	11.0	0.5	1.0	0.3	3	0.02
MC30M-1	31	50,000	1.0	4.3	1.16	1.57	0.3	2	0.02
MC30M-2	31	50,000	3.97	11.9	1.16	1.57	0.3	2	0.02
MC30M-3	31	50,000	11.02	33.0	1.16	1.57	0.3	2	0.02
MC25L	20	200,000	1.5	5.0	0.8	1.7	0.2	2	0.06
MC25	20	200,000	4	12	0.8	1.7	0.2	2	0.06
MC25H	20	200,000	10	30	0.8	1.7	0.2	2	0.06
MC75-1	75	250,000	0.5	2.5	1.0	2.5	0.3	2	0.1
MC75-2	75	250,000	2	14	1.0	2.5	0.3	2	0.1
MC75-3	75	250,000	6	80	1.0	2.5	0.3	2	0.1
MC75-4	75	250,000	55	160	1.0	2.5	0.3	2	0.1


¹ For applications with higher side load angles consider using the side load adaptor pages 32 to 36.

MC10M still available in future



Standard version without button for MC5, MC9 and MC10. M8x0.75 also available to order.

250-0306

250-0308

17

Miniature Shock Absorbers MC150 to MC600

Self-Compensating

ACE miniature shock absorbers are maintenance-free, self-contained hydraulic components. The hermetically sealed rolling diaphragm seal system used on the MC150 to MC600 model range provides the highest possible cycle lifetime; up to 25 million cycles being achievable. All models incorporate an integral positive stop. The rolling diaphragm seal provides an extremely low rod return force. These models can be directly mounted into the end cover of pneumatic cylinders (up to 101.53 psi) to provide superior end damping compared to normal cylinder cushions. By adding the optional side load adaptor it is possible to accept side loads up to 25° from the axis. The wide range of models available ensure a seamless range of operation on applications with effective weights ranging from 2 lbs up to 10,000 lbs by selecting the appropriate model.

> "Rolling diaphragm seal system – up to 25 million cycles possible !"

> > Impact velocity range: 0.26 to 19.7 ft/sec MC150H3: 0.32 to 1.53 ft/sec MC225H3: 0.22 to 1.03 ft/sec MC600H3: 0.25 to 1.15 ft/sec

Internal

Hex Socket

Material: Shock absorber body: Nitride hardened steel. Piston rod: Hardened stainless steel. Accessories: Steel with black oxide finish or nitride hardened. Rolling diaphragm seal: EPDM.

Note: Local contamination can effect the rolling seal and reduce the lifetime. PLease contact ACE for a suitable solution.

E4 capacity rating: (max. energy per hour, in-lbs/h) If your application

exceeds the tabulated E_4 figures consider additional cooling i.e. cylinder exhaust air etc. Ask ACE for further details.

Mounting: In any position. If precise end position is required, consider use of the optional stop collar.

Operating temperature range: 32 °F to 150 °F

On request: Corrosion-resistant Weartec Plus outer tube coating is standard. Other coatings and construction materials are available upon request.

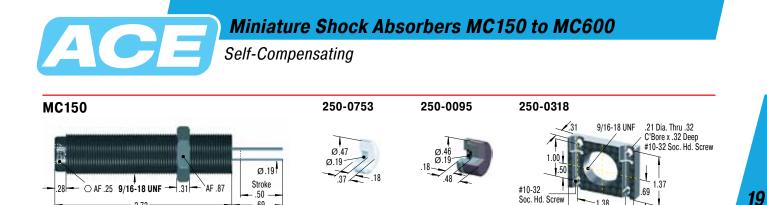
Piston Rod

Outer Body

Self-Retaining

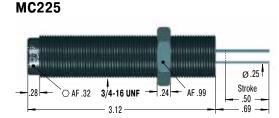
Main Bearing

Locknut


Rolling Diaphragm Seal

Diaphragm Locator

O-Ring


Piston with Integral Positive Stop

Pressure Chamber with Metering Orifices

Accessories, mounting, installation ... see pages 33 to 37.

2.72

.69

Nylon Button

250-0754

E₃ max = 123.91 lbs

250-0755

ø.90 Ø 31

Nylon Button

E₃ max = 601.85 lbs

Ø.31

Stroke

1.00

1.24 ---

AF 1.23

.24

250-0099

Steel/Urethane

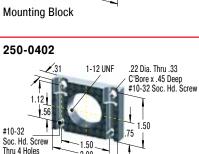
Button

Button

Steel/Urethane

Thru 4 Holes Steel/Urethane Button

250-0402


Mounting Block

#10-32 _____ Soc. Hd. Screw

Thru 4 Holes

Mounting Block

250-0401

38

3/4-16 UNF

1.50

2.00

.22 Dia. Thru .33 C'Bore x .45 Deep #10-32 Soc. Hd. Screw

1.50

75

Accessories, mounting, installation ... see pages 34 to 37.

1-12 UNF

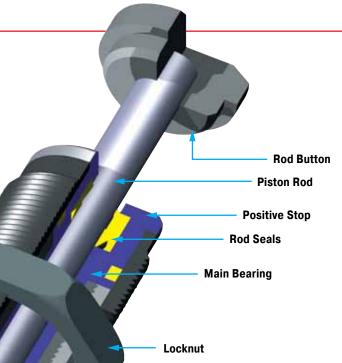
4.34

Accessories, mounting, installation ... see pages 34 to 37.

Canacity Chart

MC600

.28


	Max. Energy	y Capacity	Effective	Effective Weight We					
			Self-Corr	Self-Compensating					
Type Part Number	E ₃ in-lbs/Cycle	E ₄ in-Ibs/h	We min. Ibs	We min. We max.		Max. Return Force Ibs	Rod Reset Time sec	¹ Max. Side Load Angle °	Weight Ibs
MC150	175	300,000	2	22	0.70	1.20	0.4	4	0.12
MC150H	175	300,000	20	200	0.70	1.20	0.4	4	0.12
MC150H2	175	300,000	150	450	0.70	1.20	0.4	4	0.12
MC150H3	175	300,000	400	900	0.70	1.20	1.0	4	0.12
MC225	360	400,000	5	55	1.00	1.50	0.3	4	0.34
MC225H	360	400,000	50	500	1.00	1.50	0.3	4	0.34
MC225H2	360	400,000	400	2,000	1.00	1.50	0.3	4	0.34
MC225H3	360	400,000	1,800	4,000	1.00	1.50	0.3	4	0.34
MC600	1,200	600,000	20	300	1.00	2.00	0.6	2	0.57
MC600H	1,200	600,000	250	2,500	1.00	2.00	0.6	2	0.57
MC600H2	1,200	600,000	880	5,000	1.00	2.00	0.6	2	0.57
MC600H3	1,200 600,000 4,800 10,000		1.00	2.00	0.6	2	0.57		

¹ For applications with higher side load angles consider using the side load adaptor pages 33 to 36.

Miniature Shock Absorbers SC190 to SC925

Soft-Contact and Self-Compensating

ACE miniature shock absorbers are maintenance-free, self-contained hydraulic components. The SC-Series provide dual performance benefits. They provide "soft contact" deceleration where initial impact reaction forces are very low with the advantages of self-compensation to cope with changing input energy conditions without adjustment. They have long stroke lengths to provide smooth deceleration and low reaction forces. They have an integrated mechanical stop and are ideal for use on handling equipment, linear transfers, rodless cylinders and pneumatic pick and place systems etc. The overlapping operating ranges enable the SC series to handle effective weights ranging 1.5 lbs up to 4,600 lbs. With the optional side load adaptor fitted they can cope with the side loads up to 25°.

Accumulator

Piston
 Piston Check Valve

Pressure Chamber with Metering Orifices

Return Spring

Outer Body

Impact velocity range: 0.5 to 12 ft/sec

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish or nitride hardened. Piston rod: Hardened stainless steel.

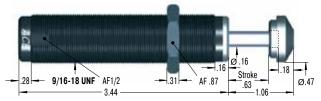
E4 capacity rating: (max. energy per hour, in-lbs/h) If your application

exceeds the tabulated E_4 figures consider additional cooling i. e. cylinder exhaust air etc. Ask ACE for further details.

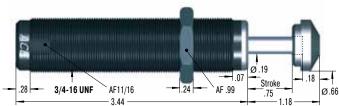
Mounting: In any position. If precise end position is required, consider use of the optional stop collar.

Operating temperature range: 32 °F to 150 °F

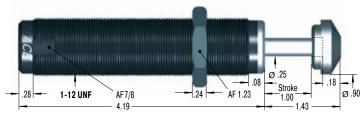
On request: Corrosion-resistant Weartec Plus outer tube coating is standard. Other coatings and construction materials are available upon request.



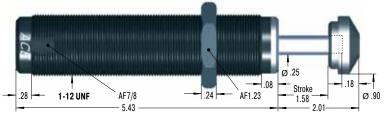
Miniature Shock Absorbers SC190 to SC925


Soft-Contact and Self-Compensating

SC190


Accessories, mounting, installation ... see pages 33 to 37.

SC300

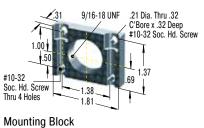

Accessories, mounting, installation ... see pages 33 to 37.

SC650

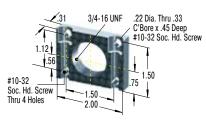
Accessories, mounting, installation ... see pages 33 to 37.

SC925

Accessories, mounting, installation ... see pages 33 to 37.

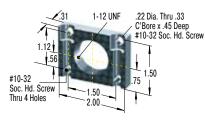

Available without rod end button on request.

Capacity Chart

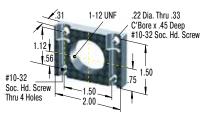

eupuony en											
	Max. Energy	ax. Energy Capacity Effective V									
			Soft-0	Contact	Self-Cor	npensating					
Type Part Number	E ₃ in-lbs/Cycle	E ₄ in-lbs/h	We min. Ibs	We max. Ibs	We min. Ibs	We max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Rod Reset Time sec	¹ Max. Side Load Angle °	Weight Ibs
SC190-0	225	300,000	-	-	1.54	8.82	0.9	1.9	0.25	5	0.18
SC190-1	225	300,000	5	13	3	15	0.9	1.9	0.25	5	0.18
SC190-2	225	300,000	12	36	8	40	0.9	1.9	0.25	5	0.18
SC190-3	225	300,000	30	90	20	100	0.9	1.9	0.25	5	0.18
SC190-4	225	300,000	75	200	50	225	0.9	1.9	0.25	5	0.18
SC300-0	300	400,000	-	-	1.54	4	1.05	2.15	0.1	5	0.25
SC300-1	300	400,000	5	15	3	18	1.05	2.15	0.1	5	0.25
SC300-2	300	400,000	15	50	10	60	1.05	2.15	0.1	5	0.25
SC300-3	300	400,000	50	150	30	180	1.05	2.15	0.1	5	0.25
SC300-4	300	400,000	150	400	70	450	1.05	2.15	0.1	5	0.25
SC650-0	650	600,000	-	_	5.07	30.86	2.4	6.87	0.2	5	0.67
SC650-1	650	600,000	24	80	17	100	2.4	6.87	0.2	5	0.67
SC650-2	650	600,000	75	250	50	300	2.4	6.87	0.2	5	0.67
SC650-3	650	600,000	240	800	150	900	2.4	6.87	0.2	5	0.67
SC650-4	650	600,000	800	2,400	450	2,600	2.4	6.87	0.2	5	0.67
SC925-0	975	800,000	18	55	10	65	2.4	7.4	0.4	5	0.87
SC925-1	975	800,000	50	160	30	200	2.4	7.4	0.4	5	0.87
SC925-2	975	800,000	130	460	90	600	2.4	7.4	0.4	5	0.87
SC925-3	975	800,000	400	1,350	250	1,600	2.4	7.4	0.4	5	0.87
SC925-4	975	800,000	1200	4,300	750	4,600	2.4	7.4	0.4	5	0.87

¹ For applications with higher side load angles consider using the side load adaptor pages 33 to 36.

250-0318

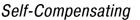


250-0401


Mounting Block

250-0402

Mounting Block


250-0402

Mounting Block

21

Miniature Shock Absorbers SC²25 to SC²650

ACE miniature shock absorbers are maintenance-free, self-contained hydraulic components. The design of the SC²-Series units combines the piston and inner tube into a single component and provides more than double the energy capacity of previous units in the same envelope size. They have an integrated mechanical stop and are ideal for use on handling equipment, linear transfers, rodless cylinders, pneumatic pick and place systems and rotation modules etc. The smaller sizes up to type SC²190, have a dynamic membrane seal which allows direct installation into the end cover of pneumatic cylinders (for end position damping max. 101.53 psi). The greatly increased energy capacity coupled with overlapping effective weight ranges covering from 2.2 lbs up to 13,999 lbs makes the SC2-Series units ideal for rotary actuators. With the optional side load adaptor fitted they can cope with the side loads up to 25°.

22

"Combined piston and inner tube – increased energy capacity up to 200 %!" Rod Button

Piston Rod with Integrated Positive Stop

Rolling Diaphragm Seal (Type SC²190)

Self-Retaining Main Bearing

- Locknut

Piston Tube

Piston Check Valve

Pressure Chamber with Metering Orifices
 Return Spring
 Outer Body

Impact velocity range:

SC25M5: 2.9 to 14.7 ft/sec SC25M6: 0.99 to 7.3 ft/sec SC25M7: 0.29 to 2.3 ft/sec SC75M5: 2.9 to 18.6 ft/sec SC75M6: 0.94 to 7.1 ft/sec SC75M7: 0.29 to 2.1 ft/sec SC190M5: 2.9 to 18.3 ft/sec SC190M6: 0.98 to 7.1 ft/sec SC190M7: 0.29 to 2.2 ft/sec SC300, SC650: 0.30 to 12.0 ft/sec

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish or nitride hardened. Piston rod: Hardened stainless steel.

Mounting: In any position. If precise end position is required, consider use of the optional stop collar.

Operating temperature range: 32 °F to 150 °F

On request: Corrosion-resistant Weartec Plus outer tube coating is standard. Other coatings and construction materials are available upon request.

Miniature Shock Absorbers SC²25 to SC²650

250-0307

Ø.18

Mounting Block

Ø.18

Mounting Block

Ø.18

Mounting Block

250-0401

#10-32

Soc. Hd. Screw

250-0402

#10-32

Soc. Hd. Screw

Mounting Block

Thru 4 Holes

Mounting Block

31

Thru 4 Holes

250-0352

250-0309

M10x⁻

M14x1.5

3/4-16 UNF

1.50

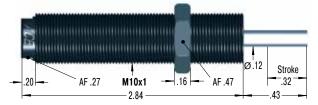
2.00

1-12 UNF

.22 Dia. Thru .33 C'Bore x .45 Deep #10-32 Soc. Hd. Screw

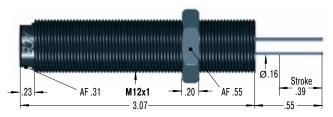
.50

.22 Dia. Thru .33

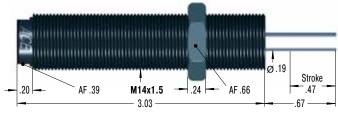

50

C'Bore x .45 Deep #10-32 Soc. Hd. Screw

23


Self-Compensating

SC25M


Accessories, mounting, installation ... see pages 32 to 37.

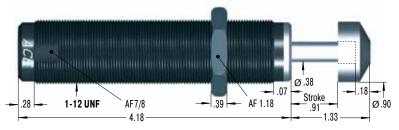
SC75M

Accessories, mounting, installation ... see pages 33 to 37.


SC190M

M14x1 also available to special order

Accessories, mounting, installation ... see pages 33 to 37.

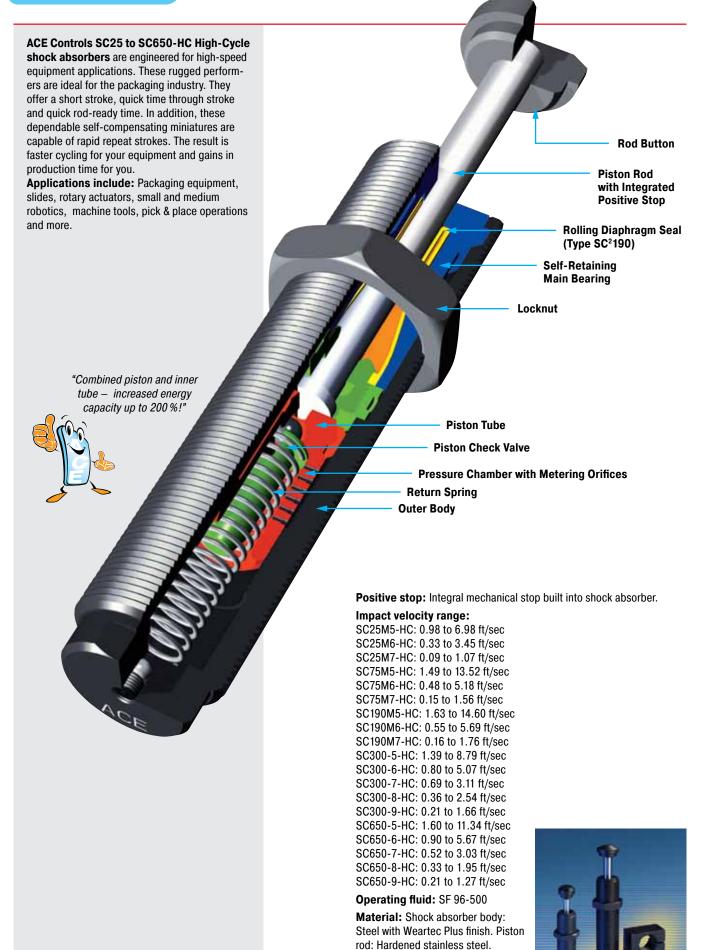

SC300



Accessories, mounting, installation ... see pages 34 to 37.

SC650

Issue 7.2014 Specifications subject to change



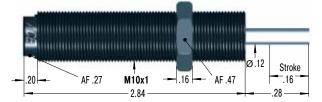
Capacit	y Chart											
	Max. Energy	Max. Energy Capacity Effective Weight We										
			Soft Hard									
Туре	E ₃	E ₄	-5	-6	-7	-8	-9	Min. Return	Max. Return	Rod Reset	¹ Max. Side	Weight
	in-lbs/Cycle	in-lbs/h	min. max.	min. max.	min. max.	min. max.	min. max.	Force	Force	Time	Load Angle	lbs
			lbs	lbs	lbs	lbs	lbs	lbs	lbs	sec	0	
SC25M	89	142,000	2.2 - 11.0	9 - 97	93 - 1,100	-	-	0.90	3.07	0.3	2	0.06
SC75M	142	266,000	2.2 - 18.0	15 - 272	165 - 1,760	-	-	0.69	3.40	0.4	2	0.10
SC190M	274	443,000	4.4 - 35.2	29 - 309	300 - 3,400	-	-	0.97	5.57	0.4	2	0.13
SC300	650	400,000	25.0 - 100.0	75 - 300	200 - 400	300 - 1,500	700 - 4,300	1.70	4.00	0.2	5	0.33
SC650	1,860	600,000	50.0 - 250.0	200 - 800	700 - 2,400	1,700 - 5,800	4,000 - 14,000	2.40	7.30	0.3	5	0.76

¹ For applications with higher side load angles consider using the side load adaptor pages 32 to 36.

Miniature Shock Absorbers SC25-HC to SC650-HC

High-Cycle Series, Self-Compensating

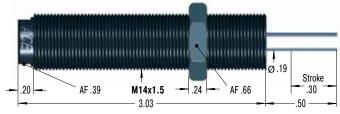
Mounting: In any position. If precise end position is required, consider use of the optional stop collar. **Operating temperature range:**


32 °F to 150 °F

Miniature Shock Absorbers SC25-HC to SC650-HC

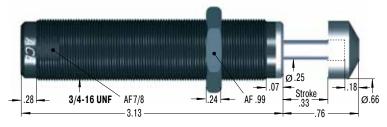
High-Cycle Series, Self-Compensating

SC25M-HC

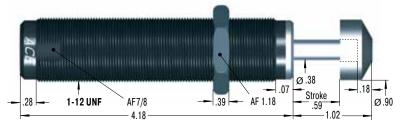

Accessories, mounting, installation ... see pages 32 to 37.

SC75M-HC

Accessories, mounting, installation ... see pages 33 to 37.

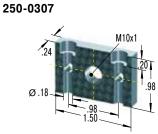

SC190M-HC

M14x1 also available to special order


Accessories, mounting, installation ... see pages 33 to 37.

SC300-HC

Accessories, mounting, installation ... see pages 34 to 37.

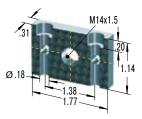

SC650-HC

Accessories, mounting, installation ... see pages 34 to 37.

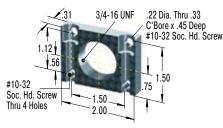
Capacity	Chart											
	Max. Energy	Capacity		Ef	fective Weig	ht We						
			Soft				Hard					
Туре	E ₃	E_4	-5	-6	-7	-8	-9	Min. Return	Max. Return	Rod Reset	¹ Max. Side	Weight
	in-lbs/Cycle	in-lbs/h	min. max.	min. max.	min. max.	min. max.	min. max.	Force	Force	Time	Load Angle	lbs
			lbs	lbs	lbs	lbs	lbs	lbs	lbs	sec	0	
SC25M-HC	20	142,000	2.2 - 11.0	9 - 97	93 - 1,100	-	-	1.98	3.08	0.2	2	0.06
SC75M-HC	75	266,000	2.2 - 18.0	15 - 272	165 - 1,760	-	-	1.94	3.4	0.3	2	0.10
SC190M-HC	175	443,000	4.4 - 35.2	29 - 309	300 - 3,400	-	-	2.67	5.57	0.3	2	0.13
SC300-HC	650	400,000	25.0 - 100.0	75 - 300	200 - 400	300 - 1,500	700 - 4,300	2.63	3.91	0.2	5	0.33
SC650-HC	1,200	600,000	50.0 - 250.0	200 - 800	700 - 2,400	1,700 - 5,800	4,000 - 14,000	4.94	8.30	0.2	5	0.76

¹ For applications with higher side load angles consider using the side load adaptor pages 32 to 36.

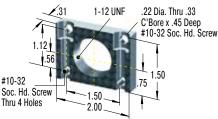
25


Mounting Block

250-0309


Mounting Block

250-0352


Mounting Block

250-0401

Mounting Block

250-0402

Mounting Block

Miniature Shock Absorbers MA

Adjustable

ACE miniature shock absorbers are maintenance-free, self-contained hydraulic components. If you prefer a fully adjustable shock absorber rather than a self-compensating model on your application then the MA series provide a directly interchangeable alternative. The adjustable series include an integrated mechanical stop. These adjustable units have long stroke lengths (MA900 with 1.57 inches superstroke) to provide smooth deceleration and low reaction forces. The MA150 incorporates the proven rolling diaphragm seal (used on the MC150 to MC600 range) and shares all the advantages of that technology. The stepless adjustment range of the MA series covers an effective weight range from 0.5 lbs up to 4,500 lbs.

Rod Button Piston Rod

Positive Stop
 Rod Seals

Main Bearing

- Locknut

Accumulator

Piston
 Piston Check Valve

Metering Orifices

Return Spring

Outer Body

Pressure and Adjustment Chamber

Adjustment: On models MA30 up to MA150: by turning the adjustment screw at rear. On the larger sizes: by turning the adjustment knob against the scale marked 0 to 9. After installation, cycle the machine a few times and turn the adjustment system until optimum deceleration is achieved (i.e. smooth deceleration throughout stroke). Hard impact at the start of stroke: Adjust the ring towards 9 or PLUS. Hard impact at the end of stroke: Adjust the ring towards 0 or MINUS.

Adjustment Knob Impact velocity range: MA30M: 2.2 to 14.6 ft/sec MA35: Max. 3.3 ft/sec

MA50M: 2.4 to 5.2 ft/sec MA150, 225, 600, 900: 0.5 to 12 ft/sec

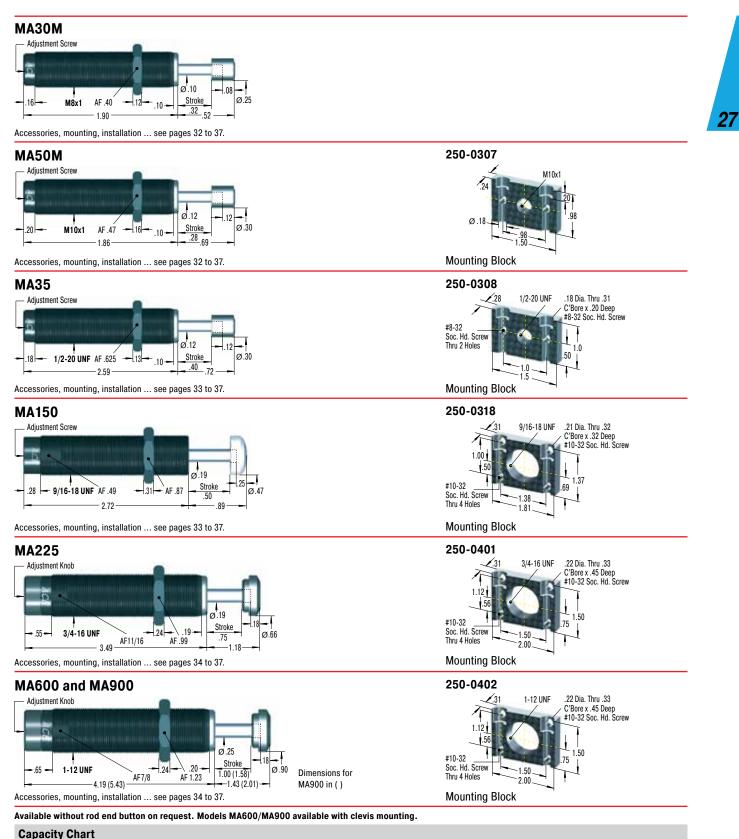
Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish or nitride hardened. Piston rod: Hardened stainless steel.

 \textbf{E}_{4} capacity rating: (max. energy per hour, in-lbs/h) If your application

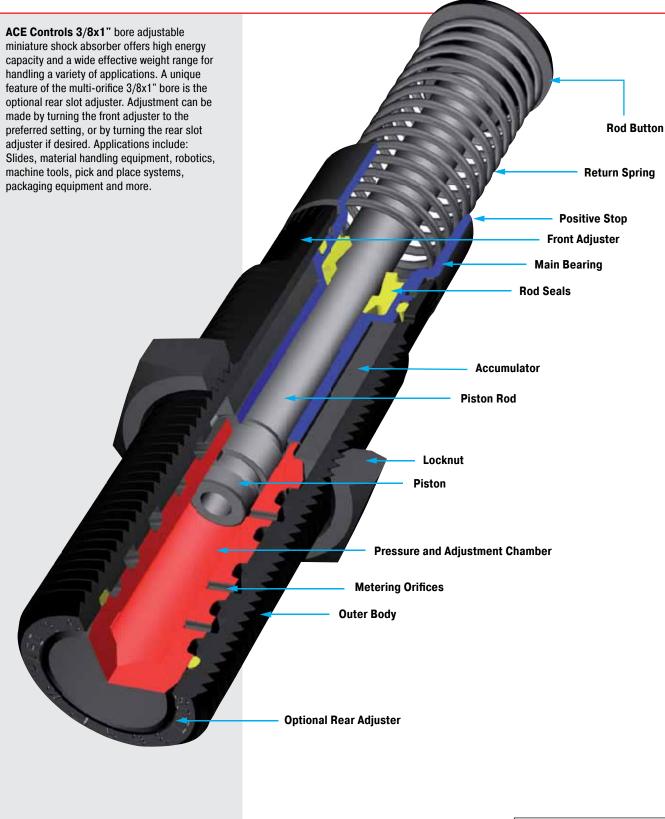
exceeds the tabulated E_4 figures consider additional cooling i. e. cylinder exhaust air etc. Ask ACE for further details.

Mounting: In any position. If precise end position is required, consider use of the optional stop collar.

Operating temperature range: 32 °F to 150 °F

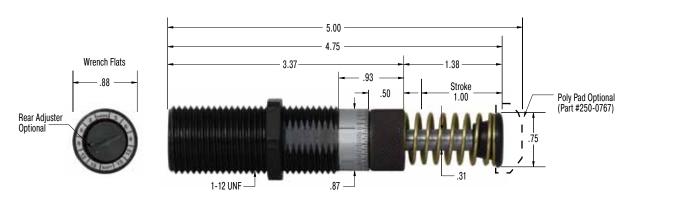

On request: Corrosion-resistant Weartec Plus outer tube coating is standard. Other coatings and construction materials are available upon request.

Miniature Shock Absorbers MA


Adjustable

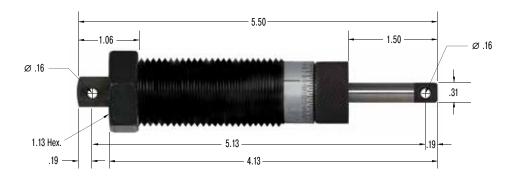
Effective Weight We Max. Energy Capacity Adjustable We min 1 Max. Side Weight Туре E₃ E۷ We max Min Max Rod Part Number in-lbs/Cycle in-lbs/h lbs lbs Return Force Return Force Reset Time Load Angle lbs lbs lbs sec MA30M 50,000 1.57 0.3 31 0.5 31 1.16 2 0.02 MA50M 50 120,000 10 45 0.47 1.80 0.3 2 0.05 MA35 35 53,000 13 125 1.20 2.60 0.2 2 0.10 200 300,000 240 1.20 2 MA150 2 0.70 0.4 0.12 MA225 300 400,000 5 500 1.05 2.15 0.1 2 0.28 MA600 3,000 2 600 600,000 20 2.40 6.87 0.2 0.67 900 30 4,500 0.90 MA900 800,000 2.40 7.40 0.4 1

¹ For applications with higher side load angles consider using the side load adaptor pages 32 to 36.

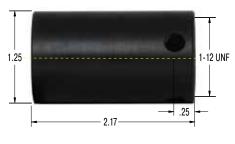

Impact velocity range: 1.6 to 15 ft/sec

Operating fluid: American 46 **Material:** Shock absorber body: Steel with black oxide finish. Piston rod: Hardened highstrength stainless steel.

Operating temperature range: 10 °F to 150 °F



AS3/8x1 still available in future


29

NA3/8x1

Clevis Mount

250-0774

Stop Collar

Capacity Chart Max. Energy Capacity **Effective Weight We** Adjustable E₃ in-lbs/Cycle **Type** Part Number We min. ¹ Max. Side Weight E_4 We max. Min. Max. Rod Return Force Return Force in-lbs/h lbs lbs Reset Time Load Angle lbs lbs lbs sec AS3/8x1 600 600,000 10 1,250 6 11 0.03 5 0.50

30

Selection Chart for Shock Absorber Accessories

¹ Side Load Adaptor

Shock Absorber Type

Thread Size M5x0.5					
MC5M	0801-001	N/A	N/A	N/A	
Thread Size M6x0.5					
MC9M	250-0716	N/A	N/A	N/A	
Thread Size M8x1					
MA30M	250-0482	N/A	N/A	250-0146	
MC10M	250-0482	N/A N/A	N/A N/A	250-0140	
MC30M	250-0482	N/A N/A	N/A N/A	250-0146	
MC30M	230-0482	N/A	N/A	230-0140	
Thread Size M10x1 - 3/8-32 UNF					
MA50M	250-0315	250-0408	250-0307	250-0562	
MC25	250-0404	250-0406	250-0306	N/A	
SC25M	250-0315	250-0408	250-0307	N/A	
SC25M-HC	250-0315	250-0408	250-0307	N/A	
				,	
Thread Size M12x1 - 1/2-20 UNF	:				
MA35	250-0405	250-0407	250-0308	N/A	
MC75	250-0405	250-0407	250-0308	250-0762	
SC75M	250-0317	250-0409	250-0309	250-0145	
SC75M-HC	250-0317	250-0409	250-0309	N/A	
Thread Size M14x1.5 – 9/16-18 L		050.007/	050.0010	050.0554	
MA150	250-0231	250-0271	250-0318	250-0554	
MC150	250-0231	250-0271	250-0318	250-0554	
SC190-0 to 4	250-0231	250-0271	250-0318	N/A	
SC190M-5 to 7	250-0231	250-0271	250-0318	250-0554	
SC190M-HC	250-0233	250-0272	250-0352	N/A	
Thread Size 3/4-16 UNF					
MA225	250-0399	250-0403	250-0401	250-0561	
MC225	250-0399	250-0403	250-0401	250-0561	
SC300-0 to 4	250-0399	250-0403	250-0401	N/A	
SC300-5 to 9	250-0399	250-0403	250-0401	N/A	
SC300-HC	205-0399	250-0403	250-0401	N/A	
	200 0000	200 0100	200 0101		
Thread Size 1-12 UNF					agr
MA600	250-0400	250-0275	250-0402	N/A	thar
AS3/8x1	250-0400	250-0774	250-0402	N/A	to c
MA900	250-0400	250-0275	250-0402	N/A	ect
MC600	250-0400	250-0275	250-0402	250-0763	įdus
SC650-0 to 4	250-0400	250-0275	250-0402	N/A	us su
SC650-5 to 9	250-0400	250-0275	250-0402	N/A	atio
SC650-HC	0801-041	250-0275	250-0402	N/A	Specifications subject to change
SC925	250-0400	250-0275	250-0402	N/A	pec

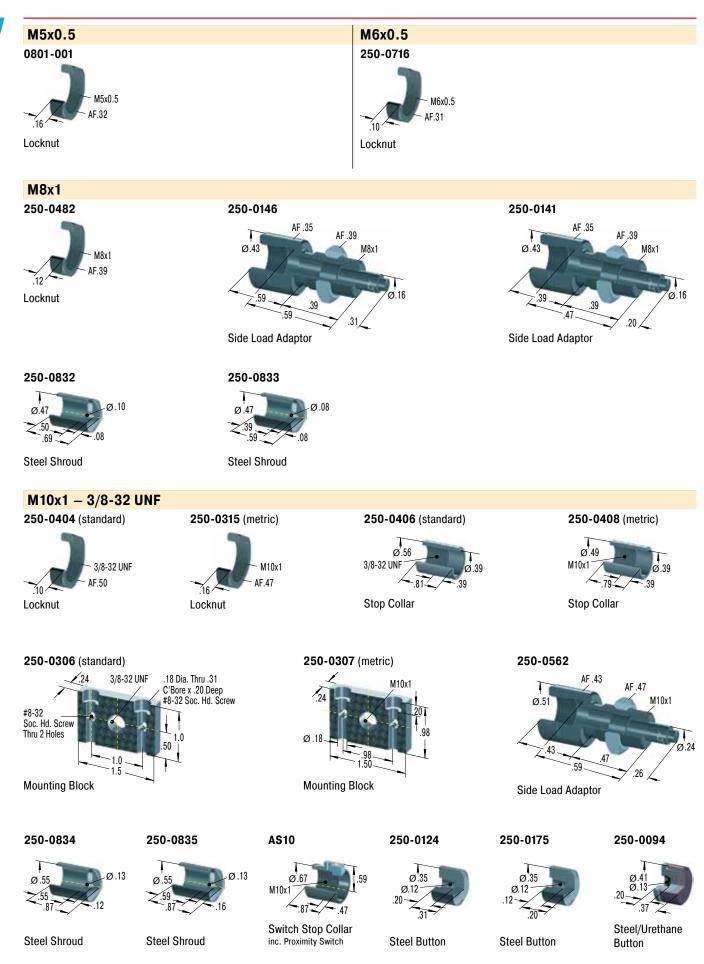
¹ Only mountable on units without button.

Remove the button from the shock absorber, if there's one fitted.

31

		2	2	2	
¹ Steel Shroud	² PNP StopLight Assembly	Steel Button	Steel/Urethane Button	Nylon Button	
	(Switch Stop Collar AS see pages 32 & 33)				Page
nread Size M5x0.5					-
N/A	N/A	N/A	N/A	N/A	32
nread Size M6x0.5					
N/A	N/A	N/A	N/A	N/A	32
nread Size M8x1					
250-0832	N/A	N/A	N/A	N/A	32
250-0833	N/A	N/A	N/A	N/A	32
250-0832	N/A	N/A	N/A	N/A	32
nread Size M10x1 / 3/8-32 UNF					
250-0834	AS10	250-0124	N/A	N/A	32
250-0834	N/A	250-0124	250-0094	N/A	32
250-0835 250-0835	N/A N/A	250-0175 250-0175	N/A N/A	N/A N/A	32 32
nread Size M12x1 / 1/2-20 UNF					
250-0836	N/A	250-0786	250-0094	N/A	33
250-0836	N/A	250-0786	250-0094	N/A	33
250-0837	AS12	250-0174	N/A	N/A	33
250-0837	AS12	250-0174	N/A	N/A	33
nread Size M14x1.5 – 9/16-18 UNF					
250-0785	250-0387	250-0111	250-0095	250-0753	33
250-0785	250-0387	250-0111	250-0095	250-0753	33
250-0733	250-0387	included	250-0096	N/A	33
250-0785 250-0785	250-0387 250-0387	250-0111 250-0111	250-0095 250-0095	N/A N/A	33 33
200-0760	200-0307	200-0111	200-0090	IN/A	33
aread Size 3/4-16 UNF					
250-0734	250-0391	included	250-0098	N/A	34
250-0170	250-0391	250-0112	250-0097	250-0754	34
250-0734 250-0734	250-0391 250-0391	included included	250-0098 250-0105	N/A N/A	34 34
250-0734	250-0391	included	250-0105	N/A N/A	34 34
250-0765	250-0395	included	250-0100	N/A	34
250-0785 N/A	250-0395	included	3 250-0767	N/A N/A	34 34
N/A N/A	250-0395	included	250-0100	N/A N/A	34
250-0171	250-0395	250-0113	250-0099	250-0755	34
250-0765	250-0395	included	250-0100	N/A	34
250-0171	250-0395	included	250-0099	N/A	34
250-0171	250-0395	included	250-0099	N/A	34
N/A	250-0395	included	250-0100	N/A	34

¹ Only mountable on units without button.

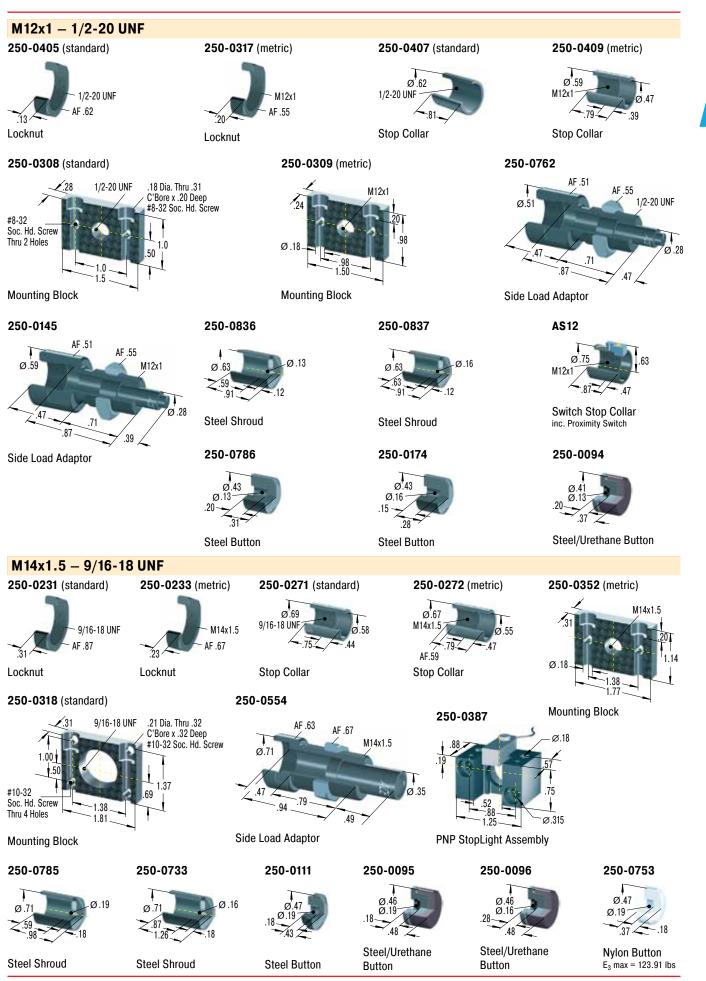

Remove the button from the shock absorber, if there's one fitted.

² NPN assemblies also available on request.

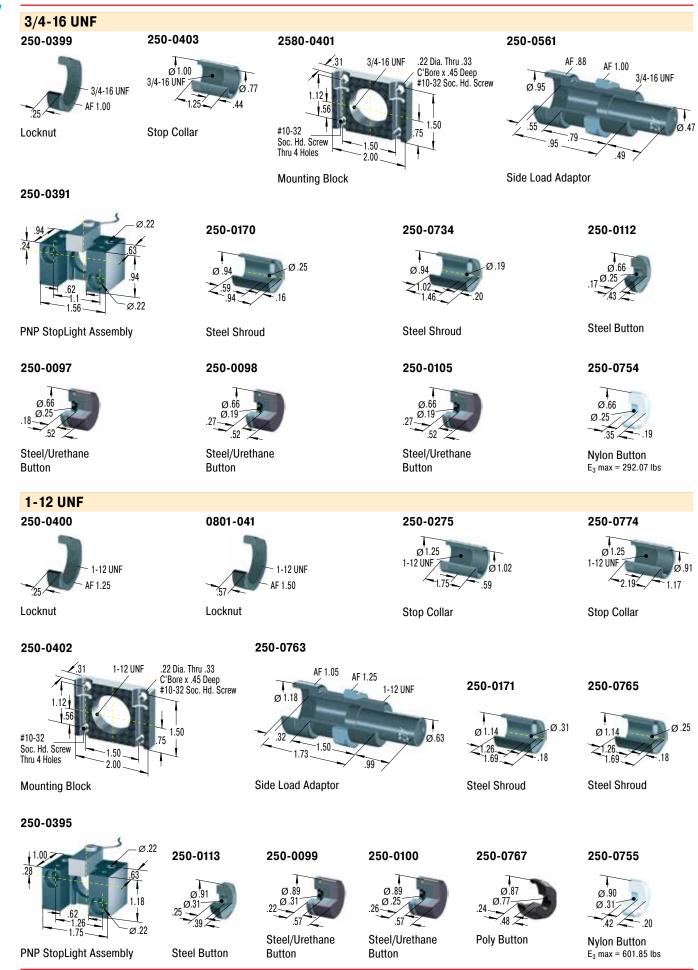
 $^{\rm 3}$ Different style than the -BP button. This poly-pad snaps over the standard steel button.

Dimensions see pages 32 to 34.

Mounting, installation... see pages 37 to 39.


32

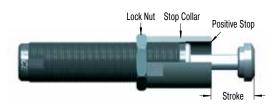
Shock Absorber Accessories M12 to M14 – 9/16-18 UNF


33

Selection Chart See Pages 32 to 33

Mounting, installation... see pages 37 to 39.

Mounting, installation... see pages 37 to 39.


Issue 7.2014 Specifications subject to change

Mounting and Installation Hints

Up to 1-12 UNF

Stop Collar

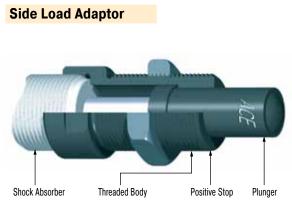
All ACE miniature shock absorbers have an **integral positive stop**. An **optional stop collar** can be added if desired to give fine adjustment of final stopping position.

35

Mounting Block

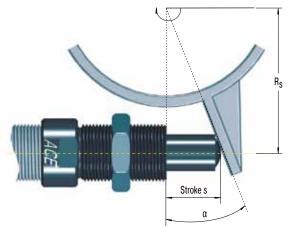
This versatile block can be mounted to a horizontal or vertical surface. The shock is screwed into the center threaded hole and secured with a locknut. One locknut is included with each shock.

Grinding beads, sand, welding splatter, paints and adhesives etc. can adhere to the piston rod. They then damage the rod seals and the shock absorber quickly fails. In many cases the installation of the optional steel shroud can provide worthwhile protection and increase lifetime.


Note! When installing don't forget to allow operating space for the shroud to move as the shock absorber is cycled. For part number MA, MC, SC please order with "-880" suffix. Part numbers MA150, MC150 to MC600 and SC25M to SC190M5-7 are supplied without a button.

36

Mounting and Installation Hints


Up to 1-12 UNF

With side load impact angles of more than 3° the operation lifetime of the shock absorber reduces rapidly due to increased wear of the rod bearings. The optional side load adaptor provides long lasting solution. Secure the side load adaptor with Loctite or lock nut on the shock absorber.

Material: Threaded body and plunger: Hardened high tensile steel. Hardened 610 HV1.

Note: Material that impacts the side load adaptor should be hardened to a similar value. We recommend that you install the shock absorber/side load adaptor using the thread on the side load adaptor.

Problem: Rotating impact motion causes high side load forces on the piston rod. This increases bearing wear and possibly results in rod breakage or bending. **Solution:** Install side load adaptor.

Formulae:

$$\alpha = \tan^{-1} \left(\frac{s}{2 \cdot R_s} \right) \qquad R_{s \min} = \frac{s}{2 \cdot \tan \alpha \max}$$

Example:

s = .98 α max = 25° (adapter 250-0763) R_s = 3.94 $\alpha = \tan^{-1} \left(\frac{.98}{3.94}\right)$ R_{s min} = $\frac{.98}{\tan (25^\circ)}$ $\alpha = 14^\circ$ R_{s min} = 2.1 in α = side load angle (°) R_s = mounting radius (in) α max = max. angle of impact (°) R_{s min} = min. possible

s = absorber stroke (in) mounting radius (in)

Maximum angle:

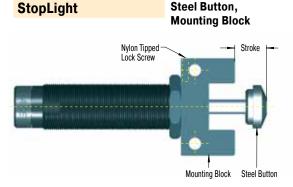
250-0141, 250-0145, 250-0146, 250-0562 250-0762 = 12.5° 250-0554,250-0561, 250-0763 = 25°


Note: By repositioning the center of the stroke of the side load plunger to be at 90 degrees to the piston rod, the side load angle can be halved. The use of an external positive stop due to high forces encountered is required.

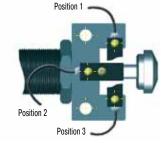
Mounting and Installation Hints


Up to 1-12 UNF

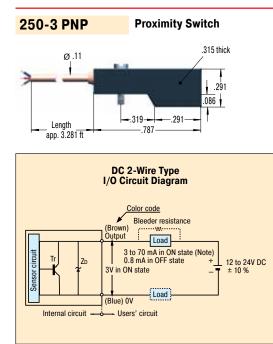
Nylon Button



While the use of industrial shock absorbers already achieves a considerable reduction in noise levels, the additional use of impact buttons made of glass fiber reinforced nylon reduces noise levels even further. At the same time, wear of impact surface is drastically minimized. The Nylon buttons are available for shock absorbers in series MC150 to MC600 and on the MA150. The buttons are fitted simply by pressing onto the piston rod.


Steel/Urethane Button

These new impact buttons made of urethane offer all above advantages of the nylon button in terms of reducing noise and wear. They fit easily onto the piston rod of the corresponding shock absorber. Please refer to the accessories table on pages 30 to 31 to see which shock absorber types the new steel/urethane buttons are available for.



The ACE stop light proximity switches detect stroke position. **Features:** Indicator light, both NPN and PNP styles.

Available for MA/MC150, SC190, MA/MC225, SC300, MA/MC600, SC650.

Mounting: We recommend to fix the steel button onto the end of the piston rod using Loctite 290. Attention! Take care not to leave any adhesive on the piston rod as this will cause seal damage. Thread the switch stop collar onto the front of the shock absorber and secure in position. Switch cable should not be routed close to power cables.

Specifications

Detecting distance:	0.10 in \pm 15 % (with standard target)
Setting distance:	0 to 0.07 in (with standard target)
Standard target:	Iron: 0.59 x 0.59 x 0.04 in
Differential travel:	10 % max. of detecting distance
Supply voltage:	12 to 24 V DC, ripple (P-P)" 10 % max
Current consumption:	3-70 mA (at 24 V DC with no load)
Response frequency:	1 KHz min.
Control output:	 max. load current: 50 mA Switching capacity: 30 V DC max. Residual voltage: 3.0 V max.
Ambient temperature:	Operating: -13° °F to 158 °F Storage: -40 °F to 185 °F
Humidity:	Operating: 45 % to 80 % Storage: 35 % to 95 %

Industrial Shock Absorbers MC33 to MC64

Self-Compensating

This range of self-compensating shock absorbers is part of the innovative MAGNUM series from ACE. You profit from the enhanced product life in the most difficult operating environments provided by the latest seal technology, hardened main bearing and also the integrated positive stop. You achieve 50% more energy absorption capacity and a much wider range of effective weight capability (between 20 lbs and 140,700 lbs!). This offers you the capability of mounting shock absorbers with the highest energy capacity ratings for their size in the industry and allows full exploitation of your machinery potential. You can access new possibilities in machine design and construction since this range offers such features as a fully threaded outer body and a new clamping flange system.

Rod Button

Integrated Positive Stop

— Rod Seals

Main Bearing

Fully Threaded Outer Body

Membrane Accumulator

Increased Piston Area

Hardened Piston Ring

Hardened One-Piece Pressure Chamber

Heavy Duty One-Piece Steel Outer Body

Impact velocity range: 0.5 to 16.5 ft/sec, on request up to 65.6 ft/sec. **Operating fluid:** Automatic Transmission Fluid (ATF)

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with zinc-iron black finish or nitride hardened. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return spring: Zinc plated or plastic-coated. For optimum heat dissipation do not paint shock absorber.

Capacity rating: For emergency use only applications it is sometimes possible to exceed the published max. capacity ratings. Please consult ACE for further details. If your application exceeds the tabulated E_4 figures (max. energy per hour in-lbs/hr)

consider additional cooling. Ask ACE for further details.

Mounting: In any position

Operating temperature range: 10 °F to 158 °F. Higher and lower temperatures see pages 46 to 47.

On request: Plated finishes. Weartec finish (seawater resistant), special oils. Mounting inside air cylinders and other special options are available on request.

Noise reduction: 3 to 7 dB when using the impact buttons with urethane insert.

Industrial Shock Aborbers MA and ML33 to 64

Adjustable

This adjustable shock absorber from ACE is unique. The innovative MAGNUM series models provide the next generation of deceleration technology to meet the needs of the future. The latest seal technology, a hardened main bearing and the integrated positive stop provide a significant increase in operating lifetime. Other innovations such as the front and rear adjuster, clamping flanges and the fully threaded outer body provide many new options in installation and mounting. Exploit the advantages of this series in your applications with its 50% increased energy capacity and a much wider effective weight range. The effective weight range extends from 20 lbs up to 175,000 lbs. The MA range models cover the majority of standard applications, whilst the ML range is specially designed for low velocity/high effective weight applications from 660 lbs up to 1,102,310 lbs effective weight.

Rod Button

39

Front Adjuster

Integrated Positive Stop

Rod Seals

Main Bearing

Fully Threaded Outer Body

Membrane Accumulator

Increased Piston Area

Hardened Piston Ring

Hardened One-Piece Pressure Chamber

Heavy Duty One-Piese Steel Outer Body

Locking Screw (MA/ML64 only)

Adjustment: Turning the front stop collar or rear adjuster towards 0 makes the unit harder. Turning towards 9 makes the unit softer.

Impact velocity range: Type ML: 0.06 up to 1.5 ft/sec, type MA: 0.5 up to 16.5 ft/sec, (up to 65.6 ft/sec on request).

Operating fluid: Automatic Transmission Fluid (ATF)

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with zinc-iron black finish or nitride hardened. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return spring: Zinc plated or plastic-coated. For optimum heat dissipation do not paint shock absorber.

Capacity rating: For emergency use only applications it is sometimes possible to exceed the published max. capacity ratings. Please consult ACE for further details. If your application exceeds the tabulated E_4 figures (max. energy per hour in-lbs/hr)

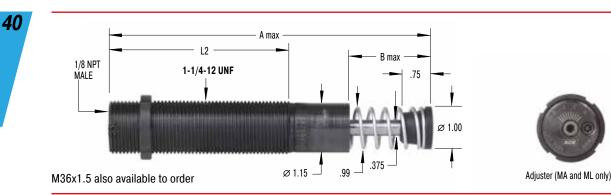
consider additional cooling. Ask ACE for further details.

Mounting: In any position

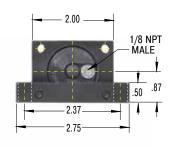
Rear

Adjuster

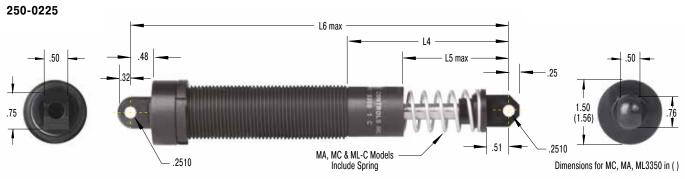
Operating temperature range: 10 °F to 158 °F. Higher and lower temperatures see pages 46 to 47.


On request: Plated finishes. Weartec finish (seawater resistant), special oils. Mounting inside air cylinders and other special options are available on request.

Noise reduction: 3 to 7 dB when using the impact buttons with urethane insert.


Industrial Shock Aborbers MC/MA/ML33

Self-Compensating and Adjustable



250-0015

Side-Foot Mount Assembly

Clevis Mount Assembly

Dimonoiono

Dimensions									
Туре	¹ Stroke inches	A max	B max	L1 min	L4	L2	L3	L5 max	L6 max
MC, MA, ML3325	0.98	5.44	0.91	3.75	2.64	3.25	1.94	1.36	6.58
MC, MA, ML3350	1.97	7.44	1.91	4.75	3.64	4.25	2.94	2.36	8.58
1 Nominal strake longth /	without integral ato	n collar fittad)							

¹ Nominal stroke length (without integral stop collar fitted).

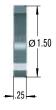
Capacity Chart MC33

		Max. Ener	gy Capacity		¹ Effective Weight We									
		Soft Hard												
Туре	² E ₃	E ₄	E ₄ with	E ₄ with	◀					Min.	Max.	Rod	Max.	Weight
Self-Com-	in-lbs/	Self-Con-	Air/Oil	Oil Recir-	-0	-1	-2	-3	-4	Return	Return	Reset	Side Load	lbs
pensating	Cycle	tained	Tank	culation	min. max.	min. max.	min. max.	min. max.	min. max.	Force	Force	Time	Angle	
		in-lbs/h	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	lbs	lbs	lbs	sec	0	
MC3325	1,350	670,000	1,100,000	1,500,000	6.61-24.25	20- 80	68-272	230- 920	780-3,120	10.3	19.8	0.03	4	1.00
MC3350	2,700	760,000	1,200,000	1,600,000	11.00-48.50	40-160	136-544	460-1,840	1,560-6,240	9.9	30.3	0.06	3	1.20

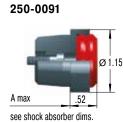
Capacity	Capacity Chart MA/ML33												
	I	Max. Energ	y Capacity		1 Effec)							
Type Adjustable	² E ₃ in-lbs/Cycle	E ₄ Self-Con- tained in-lbs/h	E₄ with Air/Oil Tank in-Ibs/h	E ₄ with Oil Recircula- tion in-lbs/h	min.	max. Ibs		Min. Return Force Ibs	Max. Return Force Ibs	Rod Reset Time sec	Max. Side Load Angle	Weight Ibs	
MA3325	1,500	670,000	1,100,000	1,500,000	20	- 3,800		10.3	19.8	0.03	4	1.0	
ML3325	1,500	670,000	1,100,000	1,500,000	661	-110,231		10.3	19.8	0.03	4	1.0	
MA3350	3,000	760,000	1,200,000	1,600,000	28	- 5,400		9.9	30.3	0.06	3	1.2	
ML3350	3,000	760,000	1,200,000	1,600,000	1,102	- 176,370		9.9	30.3	0.06	3	1.2	

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. Specifications relate to the effective stroke length (B max).

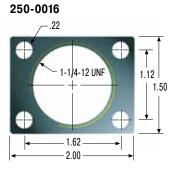


Industrial Shock Absorbers MC/MA/ML33


Shock Absorber Accessories

1-1/4-12 UNF

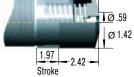
250-0038



Locking Ring

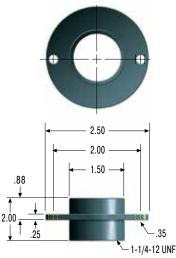
Poly Button

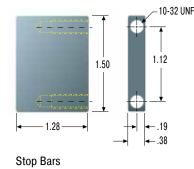
Optional button with elastomer insert for noise suppression. Option supplied ready mounted onto the shock absorber.



Rectangular Flange

250-0730


250-0130 1 A max 7.80


Steel Shroud

¹ Total installation length of the shock absorber inc. steel shroud

250-0070

250-0426

Flanged Stop Collar

Ordering Example

Ordering Example	MC	3325	5-1
Self-Compensating	1	1 1	†
Thread Size 1-1/4-12 UNF (M33)			
Stroke 0.98" (25 mm)			
Effective Weight Range Version			

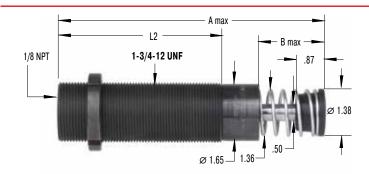
Model Type Prefix

Standard Models

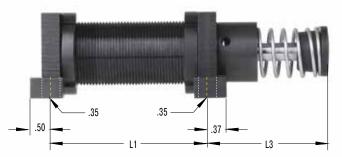
Self-Contained with Return Spring MC Self-Compensating MA Adjustable ML Adjustable, for lower impact velocity

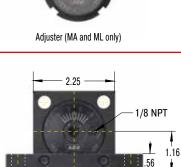
Special Models

Air/Oil Return without Return Spring MCA, MAA, MLA


Air/Oil Return with Return Spring MCS, MAS, MLS Self-Contained without Return Spring MCN, MAN, MLN

Issue 7.2014 Specifications subject to change




Self-Compensating and Adjustable

250-0025

3.00

3.75

ŧ.

Side-Foot Mount Assembly

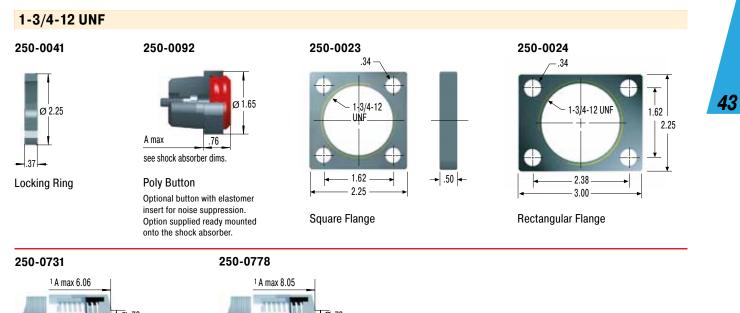
Clevis Mount Assembly

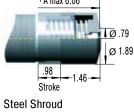
Dimensions									
Туре	1 Stroke inches	A max	B max	L1 min	L4	L2	L3	L5 max	L6 max
MC, MA, ML4525	0.98	5.69	0.91	3.35	2.57	3.72	2.09	1.51	7.85
MC, MA, ML4550	1.97	7.69	1.91	4.35	3.57	4.72	3.09	2.51	9.85
MC, MA4575	2.95	9.69	2.91	5.35	4.57	5.72	4.09	3.51	11.85
1 Nominal strake longth (without intogral ato	n coller fitted)							

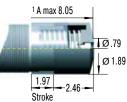
¹ Nominal stroke length (without integral stop collar fitted).

Capacity Chart MC45

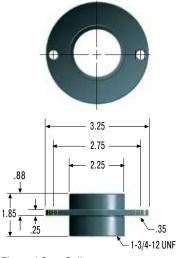
•													
	Max. Energy	gy Capacity	1	¹ Effective Weight We									
				Soft Hard									
² E ₃	E ₄	E ₄ with	E ₄ with	•					Min.	Max.	Rod	Max.	Weight
in-lbs/	Self-Con-	Air/Oil	Oil Recir-	-0	-1	-2	-3	-4	Return	Return	Reset	Side Load	lbs
Cycle	tained	Tank	culation	min. max.	min. max.	min. max.	min. max.	min. max.	Force	Force	Time	Angle	
	in-lbs/h	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	lbs	lbs	lbs	sec	۰	
3,000	950,000	1,400,000	1,700,000	15.4-59.2	50-200	170- 680	575-2,300	1,950- 7,800	15.1	22.8	0.03	4	2.5
6,000	1,000,000	1,700,000	2,200,000	28.6-119.0	100-400	340-1,360	1,150-4,600	3,900-15,600	15.1	32.2	0.08	3	3.0
9,000	1,300,000	2,000,000	2,500,000	44.0-176.4	150-600	510-2,040	1,370-6,920	5,850-23,400	11.7	40.3	0.11	2	3.5
	in-lbs/ Cycle 3,000 6,000	² E ₃ E ₄ in-lbs / Self-Con- tained in-lbs/h 3,000 950,000 6,000 1,000,000	² E ₃ E ₄ E ₄ with in-lbs/ Self-Con- Air/Oil Cycle tained Tank in-lbs/h in-lbs/h in-lbs/h 3,000 950,000 1,400,000 6,000 1,000,000 1,700,000	in-Ibs/ Self-Con- tained Air/Oil Tank Oil Recir- culation 3,000 950,000 1,400,000 1,700,000 6,000 1,000,000 1,700,000 2,200,000	² E ₃ E ₄ E ₄ with E ₄ with C ₁ with O min. max. D	² E ₃ E ₄ E ₄ with E ₄ with Calibrian in-lbs/ Self-Con- Air/Oil Oil Recir- -0 -1 Cycle tained Tank culation min. max. min. max. 3,000 950,000 1,400,000 1,700,000 15.4-59.2 50-200 6,000 1,000,000 1,700,000 2,200,000 28.6-119.0 100-400	² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation Soft Cycle Self-Con- tained in-lbs/h Air/Oil in-lbs/h Oil Recir- oin-lbs/h -0 -1 -2 3,000 950,000 1,400,000 1,700,000 15.4-59.2 50-200 170-680 6,000 1,000,000 1,700,000 2,200,000 28.6-119.0 100-400 340-1,360	² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation in-lbs/h Soft Cycle tained in-lbs/h Tank in-lbs/h Oil Recir- culation in-lbs/h -0 -1 -2 -3 3,000 950,000 1,400,000 1,700,000 15.4- 59.2 50-200 170- 680 575-2,300 6,000 1,000,000 1,700,000 2,200,000 28.6-119.0 100-400 340-1,360 1,150-4,600	² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation in-lbs/h Soft Hard ² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation in-lbs/h 0 -1 -2 -3 -4 3,000 950,000 1,400,000 1,700,000 15.4-59.2 50-200 170-680 575-2,300 1,950-7,800 6,000 1,000,000 1,700,000 2,200,000 28.6-119.0 100-400 340-1,360 1,150-4,600 3,900-15,600	² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation Soft Hard -0 -1 -2 -3 -4 Return Cycle tained in-lbs/h Tank culation min. max. bs lbs lbs	² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation in-lbs/h Soft Hard 0 -1 -2 -3 -4 Return Return Cycle tained in-lbs/h Tank culation in-lbs/h Ibs Ibs	² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation in-lbs/h Soft Hard 0 -1 -2 -3 -4 Return Return Reset Cycle tained in-lbs/h Tank culation in-lbs/h in-lbs/h in-lbs/h in-lbs/h Ibs lbs lbs	² E ₃ E ₄ E ₄ with Air/Oil E ₄ with Oil Recir- culation Soft Hard -0 -1 -2 -3 -4 Return Return Reset Side Load Cycle tained Tank culation min. max. min.


Capacity Chart MA/ML45


		Max. Energy	gy Capacity ¹ Effective Weight We									
Туре	² E ₃	E4	E ₄ with	E ₄ with				Min.	Max.	Rod	Max.	Weight
Adjust-	in-lbs/	Self-Con-	Air/Oil	Oil Recir-				Return	Return	Reset	Side Load	lbs
able	Cycle	tained	Tank	culation	min.	ma	IX.	Force	Force	Time	Angle	
		in-lbs/h	in-lbs/h	in-lbs/h		lbs		lbs	lbs	sec	۰	
MA4525	3,450	950,000	1,400,000	1,700,000	95	- 22,0	00	15.1	22.8	0.03	4	2.5
ML4525	6,900	950,000	1,400,000	1,700,000	6,614	- 242,5	08	15.1	32.2	0.03	4	2.5
MA4550	6,900	1,000,000	1,700,000	2,200,000	150	- 32,0	00	15.1	32.2	0.08	3	3.0
ML4550	6,900	1,000,000	1,700,000	2,200,000	11,023	- 396,8	32	15.1	32.2	0.08	3	3.0
MA4575	10,350	1,300,000	2,000,000	2,500,000	155	- 33,0	00	11.7	40.3	0.11	2	3.5


¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. Specifications relate to the effective stroke length (B max).



Steel Shroud

¹ Total installation length of the shock absorber inc. steel shroud

250-0428

ML4525

Flanged Stop Collar

Ordering Example

Adjustable	+ †
Thread Size 1-3/4-12 (M45)	
Stroke 0.98" (25 mm)	

Model Type Prefix

Standard Models

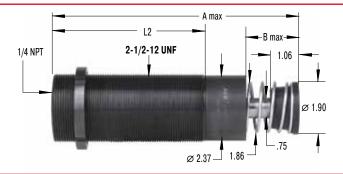
Self-Contained with Return Spring MC Self-Compensating MA Adjustable

MA Adjustable ML Adjustable, for lower impact velocity

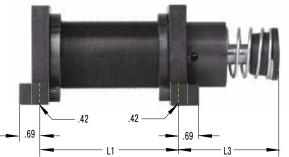
Special Models

Air/Oil Return without Return Spring MCA, MAA, MLA

Air/Oil Return with Return Spring MCS, MAS, MLS Self-Contained without Return Spring MCN, MAN, MLN

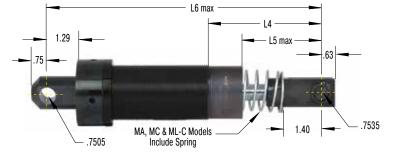

43

Issue 7.2014 Specifications subject to change


Industrial Shock Absorbers MC/MA/ML64

Self-Compensating and Adjustable

44


250-0030

Side-Foot Mount Assembly

250-0625 250-0627 for MA64150

1/4 NPT

1.78 .75 1 1

Adjuster (MA and ML only)

3.50

4.88

5.62

Clevis Mount Assembly

Dimon	
Dimen	SIONS

Dimensions									
Туре	¹ Stroke inches	A max	B max	L1 min	L4	L2	L3	L5 max	L6 max
ML6425	0.98	6.85	0.91	4.00	3.75	4.5	2.54	2.31	10.12
MC, MA, ML6450	1.97	8.85	1.91	5.00	4.75	5.5	3.54	3.31	12.12
MC, MA64100	3.94	12.85	3.91	7.00	6.75	7.5	5.54	5.31	16.12
MC, MA64150	5.91	17.73	5.91	9.00	9.50	9.5	8.42	8.06	20.87
1 Nominal stroke length (without integral stop collar fitted)									

e length (without integral stop collar fitted).

Capacity Chart MC64

•														
		Max. Ener	gy Capacit	у	¹ Effective Weight We									
					Soft				Hard					
Туре	² E ₃	E4	E ₄ with	E ₄ with	◄					Min.	Max.	Rod	Max.	Weight
Self-Com-	in-lbs/	Self-Con-	Air/Oil	Oil Recir-	-0	-1	-2	-3	-4	Return	Return	Reset	Side Load	lbs
pensating	Cycle	tained	Tank	culation	min. max.	min. max.	min. max.	min. max.	min. max.	Force	Force	Time	Angle	
		in-lbs/h	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	lbs	lbs	lbs	sec	•	
MC6450	15,000	1,300,000	2,600,000	3,400,000	308-1,190	300-1,200	1,020- 4,080	3,460-13,480	11,700- 46,800	20.1	34.9	0.12	4	6.4
MC64100	30,000	1,700,000	3,400,000	4,400,000	154- 617	600-2,400	2,040- 8,160	6,920-27,680	23,400- 93,600	23.5	61.0	0.34	3	8.15
MC64150	45,000	2,200,000	4,400,000	5,700,000	220-1,014	900-3,600	3,060-12,240	10,380-41,520	35,100-140,400	16.9	82.2	0.48	2	11.25

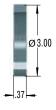
Capacity Chart MA/ML64

		Max. Energy Capacity			¹ Eff	ective Weight We					
Type Adjustable	² E ₃ in-lbs/ Cycle	E ₄ Self-Con- tained in-lbs/h	E ₄ with Air/Oil Tank in-Ibs/h	E ₄ with Oil Recir- culation in-Ibs/h	min.	max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Rod Reset Time sec	Max. Side Load Angle °	Weight Ibs
ML6425	9,000	1,100,000	2,200,000	2,900,000	15,432	- 661,386	26.7	34.9	0.06	5	5.5
MA6450	18,000	1,300,000	2,600,000	3,400,000	480	- 110,000	20.1	34.9	0.12	4	6.4
ML6450	18,000	1,300,000	2,600,000	3,400,000	24,250	- 1,102,310	20.1	34.9	0.12	4	6.4
MA64100	36,000	1,700,000	3,400,000	4,400,000	600	- 115,000	23.5	61.0	0.34	3	8.15
MA64150	54,000	2,200,000	4,400,000	5,700,000	730	- 175,000	16.9	82.0	0.48	2	11.25

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. Specifications relate to the effective stroke length (B max).

Issue 7.2014 Specifications subject to change



Industrial Shock Absorbers MC/MA/ML64

Shock Absorber Accessories

2-1/2-12 UNF

250-0042

Locking Ring

250-0839

1 A max 7.26

.98

Stroke

Steel Shroud

250-0076

1.00

3.13

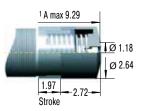
1.57-

4.25

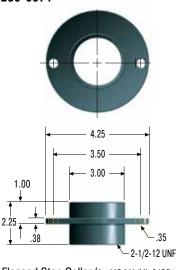
3.50

3 00 -

Ø 1.18


Ø 2.64

Poly Button


Optional button with elastomer insert for noise suppression. Option supplied ready mounted onto the shock absorber.

250-0787

Steel Shroud ¹ Total installation length of the shock absorber inc. steel shroud

Stop Bars (for MC/MA 64150)

Flanged Stop Collar (for MC/MA/ML 6425 to 64100)

MA6450

38

Thread Size 0 1 (0 10 (MGA)	
Thread Size 2-1/2-12 (M64)	
Stroke 1.97" (50 mm)	

.35

-2-1/2-12 UNF

Model Type Prefix

Standard Models

Self-Contained with Return Spring

MC Self-Compensating MA Adjustable ML Adjustable, for lower impact velocity

Special Models

Air/Oil Return without Return Spring MCA, MAA, MLA

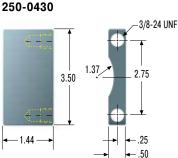
Air/Oil Return with Return Spring MCS, MAS, MLS Self-Contained without Return Spring MCN, MAN, MLN

- .62 -

45

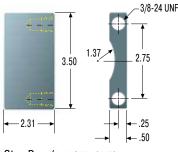
Square Flange

250-0028


.41

2-1/2-12

UNF


2.75

3.50

Stop Bars (for MC/MA/ML 6425 to 64100)

250-0432

45 ACE ACE Controls Inc. • Tel. 800-521-3320 • (248) 476-0213 • Fax (248) 476-2470 • E-mail: shocks@acecontrols.com • www.acecontrols.com

Flanged Stop Collar (for MC/MA 64150) **Ordering Example**

Industrial Shock Absorbers MC33-HT/LT to 64-HT/LT

For Extreme Ambient Temperatures and High Cycle Rates

NEV

ACE's **High and Low-Temperature MAGNUM Series** offers industrial shock absorbers that ensure, even at **extreme tem peratures of -58** °F to 302 °F, safe and reliable shock absorption combined with 100 % energy reduction. The new MAGNUM-LT series is available in all sizes corresponding with the MAGNUM-Standard series. The tried and tested MAGNUM-HT series is therefore supplemented with a low temperature variant.

> "Consistent deceleration at extreme temperatures by means of special seals and operating fluids!"

Integrated Positive Stop

Rod Button

 Rod Seals for Special Ambient Temperatures
 Main Bearing

Fully Threaded Outer Body

 Membrane Accumulator for Special Ambient Temperatures
 Increased Piston Area

Hardened Piston Ring

Hardened One-Piece Pressure Chamber

Heavy Duty One-Piece Steel Outer Body

Impact velocity range: Type MC: 0.5 to 16.5 ft/sec, on request up to 65.62 ft/sec.

Operating fluid: Type HT: Synthetic high temperature oil. Type LT: Low temperature hydraulic oil.

Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with zinc-iron black finish or nitride hardened. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return spring: Zinc plated or plastic-coated. For optimum heat dissipation do not paint shock absorber.

Capacity rating: For emergency use only applications it is sometimes possible to exceed the published max. capacity ratings. Please consult ACE for further details. If your application exceeds the tabulated E_4 figures (max. energy per hour in-lbs/hr)

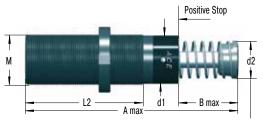
consider additional cooling. Ask ACE for further details.

Mounting: In any position

Operating temperature range: Type LT: -58 °F to 150 °F, type HT: 32 °F to 302 °F.

On request: Plated finishes, weartec finish (seawater resistant). Mounting inside air cylinders and other special options are available on request.

Noise reduction: 3 to 7 dB when using the impact buttons with urethane insert.



Industrial Shock Absorbers MC33-HT/LT to 64-HT/LT

For Extreme Ambient Temperatures and High Cycle Rates

47

Note: 5.91" stroke model does not include stop collar and positive stop is provided by the rod button (\emptyset 2.36")

MC3350-2-HT

Ordering Example

Self-Compensating Thread Size 1-1/4-12 (M33) Stroke 1.97" (50 mm)		
Effective Weight Range Code HT = Version for High Temperature Use	 	
LT = Version for Low Temperature Use	 	

Complete Details Required when Ordering

Load to be decelerated	W	(lbs)
Impact velocity	V	(ft/sec)
Propelling force	F	(lbs)
Operating cycles per hour	С	(/hr)
Number of absorbers in parallel	n	
Ambient temperature	°F	

The calculation and selection of the most suitable shock absorber (effective weight range) should be carried out or be approved by ACE.

Dimensions and Capacity Chart MC33-HT to MC64-HT

								Ma	ax. Energy Capa	acity		
								per Cycle	per	Hour		
Туре	¹ Stroke inches	A max	В	d1	d2	L2	М	E ₃ in-lbs/Cycle	E ₄ at 68 °F in-lbs/h	E ₄ at 212 °F in-lbs/h	Max. Side Load Angle °	Weight Ibs
MC3325-HT	0.98	5.44	0.91	1.15	1.00	3.25	1-1/4-12	1,350	1,902,909	725,760	4	0.45
MC3350-HT	1.97	7.44	1.91	1.15	1.00	4.25	1-1/4-12	2,700	2,159,580	823,118	3	0.54
MC4525-HT	0.98	5.69	0.91	1.65	1.38	3.72	1-3/4-12	3,000	2,717,177	1,035,536	4	1.13
MC4550-HT	1.97	7.69	1.91	1.65	1.38	4.72	1-3/4-12	6,000	2,841,087	1,079,790	3	1.36
MC6450-HT	1.97	8.85	1.91	2.37	1.90	5.5	2-1/2-12	15,000	3,708,460	1,407,267	4	2.9
MC64100-HT	3.94	12.85	3.91	2.37	1.90	7.5	2-1/2-12	30,000	4,867,907	1,770,148	3	3.7

Adjustable models are also available on request. ¹ Nominal stroke length (without stop collar fitted).

Dimensions and Capacity Chart MC33-LT to MC64-LT

								Max. Energ	y Capacity			
								per Cycle	per Hour			
Туре	¹ Stroke inches	A max	В	d1	d2	L2	Μ	E ₃ in-lbs/Cycle	E ₄ in-lbs/h	² Rod Reset Time sec	Max. Side Load Angle °	Weight Ibs
MC3325-LT	0.98	5.44	0.91	1.15	1.00	3.25	1-1/4-12	1,350	670,000	0.08	4	1.00
MC3350-LT	1.97	7.44	1.91	1.15	1.00	4.25	1-1/4-12	2,700	760,000	0.15	3	1.2
MC4525-LT	0.98	5.69	0.91	1.65	1.38	3.72	1-3/4-12	3,000	950,000	0.08	4	2.5
MC4550-LT	1.97	7.69	1.91	1.65	1.38	4.72	1-3/4-12	6,000	1,000,000	0.16	3	3.0
MC4575-LT	2.95	9.69	2.91	1.65	1.38	5.72	1-3/4-12	9,000	1,300,000	0.24	2	3.5
MC6450-LT	1.97	8.85	1.91	2.37	1.90	5.5	2-1/2-12	15,000	1,300,000	0.24	4	6.4
MC64100-LT	3.94	12.85	3.91	2.37	1.90	7.5	2-1/2-12	30,000	1,700,000	0.60	3	8.15
MC64150-LT	5.91	17.73	5.91	2.37	2.38	9.5	2-1/2-12	45,000	2,200,000	0.75	2	11.25

Adjustable models are also available on request.

¹ Nominal stroke length (without stop collar fitted).

² at -58 °F

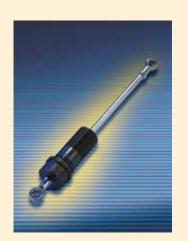
Issue 7.2014 Specifications subject to change

More than Standard

ACE can also offer more than its already extensive range of standard products covering body sizes from M5 up to M130. For over 40 years we have designed and developed many customer specific "specials". These include units with special damping characteristics for unusual applications or non-standard materials or operating fluids. Special seals and mounting accessories for customers specific applications are also available.

Below are a few examples of the thousands of special options that we have provided in the past.

48


Special shock absorbers with damping in the pull direction.

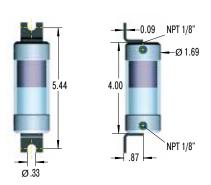
Ask for details.

Special shock absorbers with nonstandard spring for higher return force.

Ask for details.

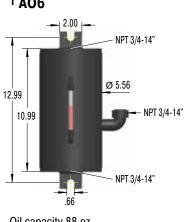
Special shock absorbers with lengthened piston rods and clevis mounts for extended mounting points.

Ask for details.


Special shock absorbers with guided anti-rotation head with built in roller for damping and then allowing the sideways transfer of heavy loads.

Ask for details.

Oil capacity 0.6 oz.



Material: Alu. caps and polycarbonate body.

Oil capacity 11 oz. Material: Steel

1 AO6

Oil capacity 88 oz. Material: Steel

With Recirc. Circuits Ex. 5-6

Non-Return Valve

CV1/4

CV3/8

CV1/2

CV3/4

CV3/4

CV3/4

Tank

AO3

AO3

A06

A082

A082

A082

CV1/2

CV3/4

A06

A082

¹ Detail drawings on request

Conn. Pipe. Ø

Min.

0.16

0.24

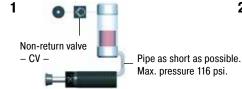
0.31

0.59

0.75

1.50

Pipe as short

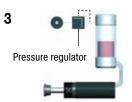

as possible

Max. pressure 116 psi. Max. temperature 176 °F. **Part Numbers** Oil filling: ATF-Oil 42 cSt at 104 °F for all shock Туре With Tank Examples 1-4 absorbers in MAGNUM Series. Mount air/oil Tank Non-Return Valve tank higher than shock absorber. Bleed all MCA, MAA, MLA33... A01 CV1/8 air from system before operating. MCA, MAA, MLA45... A01 CV1/8 MCA, MAA, MLA64... CV1/4 A03 Attention: Exhaust tank before carrying out service. CAA, AA2.. A06 CV1/2 Check valve holds pressure!

5

Suggested air/oil tanks in accordance with E₄ ratings

Piston rod returns immediately to extended position when load moves away. Operation without main air supply possible for short periods.



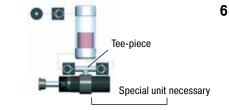
CAA, AA3.

AO82 details on request

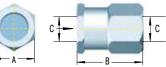
CAA4...

Return stroke may be sequenced by pneumatic valve at any desired time. No return force until valve energized.

Return force can be adjusted by pressure regulator. Ensure safe minimum pressure to return shock absorber.


0

Spring return with air/oil tank. No air supply connected. Note: Will extend return time.


Thread Sizes for	or connection to air/o	il tank
Туре	Thread Bottom	² Thread Side
MCA, MAA, MLA33	¹ G1/8 inside	G1/8 inside
MCA, MAA, MLA45	G1/8 inside	G1/8 inside
MCA, MAA, MLA64	G1/4 inside	G1/4 inside
¹ adapted ² on request (add suff	iv _PC/_P)	

² on request (add suffix -PG/-P)

Oil recirculation circuit for extreme high cycle rates. Warm oil is positively circulated through air/oil tank for increased heat dissipation.

> Part Numbers: CV... Max. pressure: 290 psi Max. temperature: 203 °F Suitable for: Oil, air, water. Material: Aluminium

Connection of two shock absorbers to one air/ oil tank is possible. Use next larger size tank. Combination with examples 2, 3 and 5 possible.

Non-Return Valves											
Type Part Number	A	В	С								
CV1/8	0.750	0.94	1/8-27 NPT								
CV1/4	1.125	1.31	1/4-18 NPT								
CV3/8	1.125	1.31	3/8-18 NPT								
CV1/2	1.625	1.56	1/2-14 NPT								
CV3/4	1.875	2.31	3/4-14 NPT								

Heavy Industrial Shock Absorbers CA2 to CA4

The CA2 to CA4 complete the ACE product range of self-compensating shock absorbers. With these units ACE has a continuous range of self-compensating units to handle effective weights from 1,600 lbs up to 720,000 lbs. **Rod Button** The robust CA series units are designed for extremely heavy duty applications. Damage caused by errors in adjustment setting is ruled out by their self-compensating design. You can select the correct model for your application using the ACE Selection Program or by using the capacity chart. The CA units are maintenance-free and self-contained with an energy capacity of up to 1,119,618 lbs. **Return Spring Piston Rod Rod Seals Main Bearing** Piston Accumulator **Outer Body Pressure Chamber** with Metering Orifices Positive stop: Install mechanical stop 0.09 inch before the end of

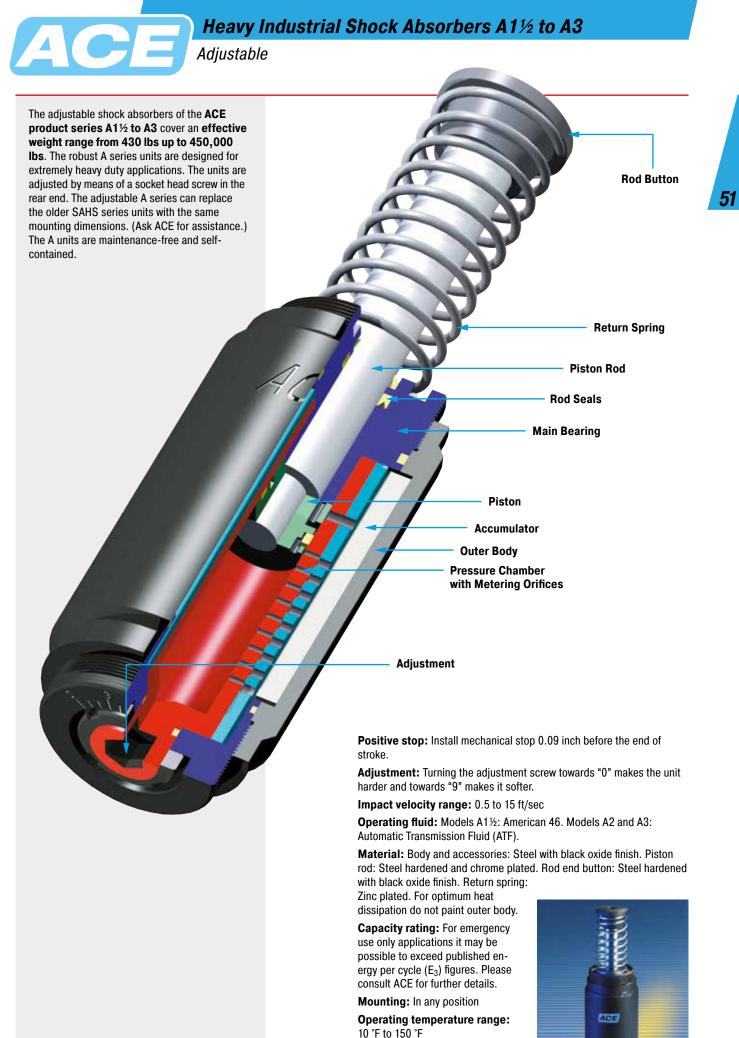
Positive stop: Install mechanical stop 0.09 inch before the end of stroke.

Impact velocity range: 1 up to 16.5 ft/sec

Operating fluid: Automatic Transmission Fluid (ATF)

Material: Body and accessories: Steel with black oxide finish. Piston rod: Steel hardened and chrome plated. Rod end button: Steel hardened with black oxide finish. Return spring:

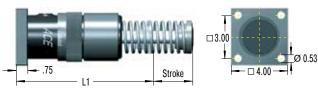
Zinc plated. For optimum heat dissipation do not paint outer body.


Capacity rating: For emergency use only applications it may be possible to exceed published energy per cycle (E₃) figures. Please consult ACE for further details.

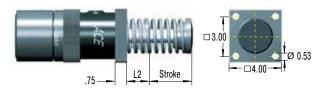
Mounting: In any position

Operating temperature range: 10 °F to 150 °F

On request: Special oils, or for higher or lower impact velocities outside range shown above, or other options please consult ACE.


On request: Special oils, or for higher or lower impact velocities outside range shown above, or

other options please consult ACE.

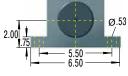


Rear Flange - R

52

Front Flange - F

Clevis Mounting -C



Due to limited force capacity the respective ability should be reviewed by ACE.

Install mechanical stop 0.09 inch before end of stroke.

Foot Mounting -S

Not available on 2" stroke models.

4.00

Ordering Example	A1½x2R
Adjustable	<u>+</u> + +
Bore Size Ø 1½"	
Stroke Length 2" (50.8 mm)	
Rear Flange Mounting	

Model Type Prefix

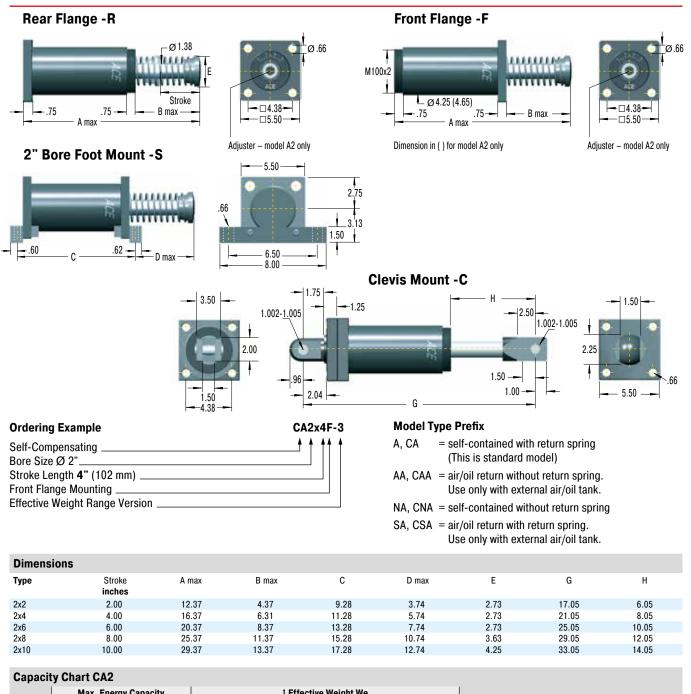
- A = self-contained with return spring (This is standard model)
- AA = air/oil return without return spring. Use only with external air/oil tank.
- NA = self-contained without return spring
- SA = air/oil return with return spring. Use only with external air/oil tank.

Dimensions						
Туре	Stroke inches	L1	L2	L3	L4	L5
A1½x2	2.00	7.69	2.13	-	-	10.94 - 12.94
A1½x3½	3.50	9.19	2.13	6.69	2.31	12.46 - 15.97
A11⁄2x5	5.00	10.69	2.13	8.19	2.31	13.97 - 18.97
A11/2x61/2	6.50	12.94	2.88	9.69	3.06	16.22 - 22.72

Capacity Chart

	N 1	lax. Energy Capa	city	¹ Effective	Weight We					
Туре	² E ₃ in-lbs/Cycle	³ E ₄ Self-Contained in-Ibs/h	³ E ₄ with Air/Oil Tank in-Ibs/h	We min. Ibs	We max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Rod Reset Time sec	Max. Side Load Angle	Weight Ibs
A1½x2	21,000	3,200,000	4,000,000	430	70,000	34.9	47.6	0.1	5	16.4
A1½x3½	36,750	5,600,000	7,000,000	480	80,000	25.4	47.6	0.25	4	19.4
A1½x5	52,500	8,000,000	10,000,000	500	90,000	20.7	52.5	0.4	3	22.7
A1½x6½	68,250	10,400,000	13,000,000	680	100,000	20.7	97.4	0.4	2	25.0

¹ The effective weight range limits can be raised or lowered to special order.


² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

³ Figures for oil recirculation systems on request.

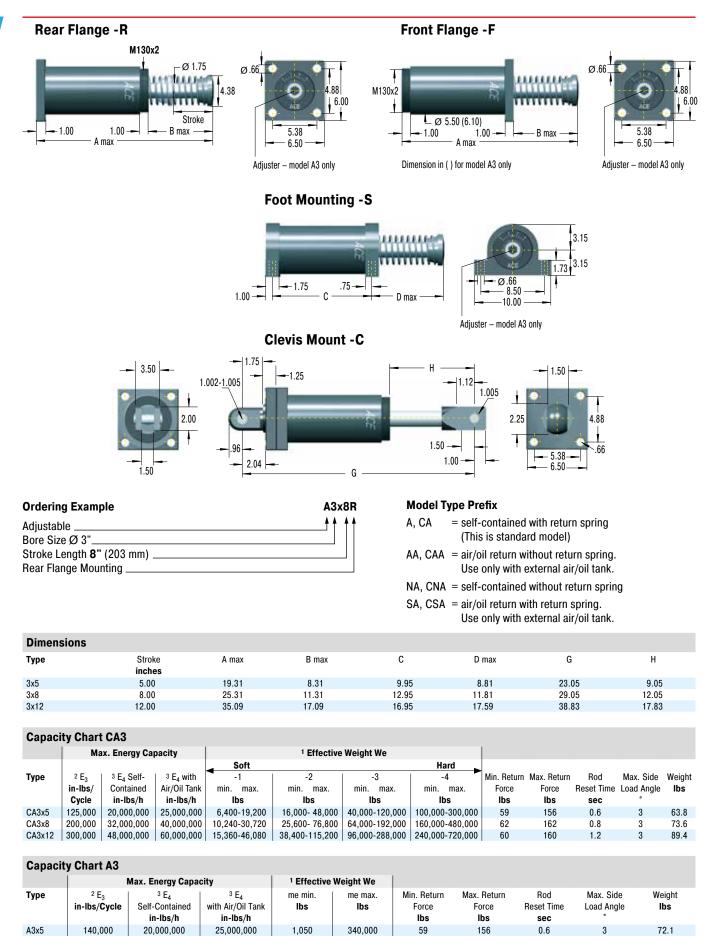
53

Self-Compensating and Adjustable

Max	. Energy Cap	pacity		¹ Effective	Weight We						
			Soft			Hard					
² E ₃	³ E ₄	³ E ₄ with	4				Min.	Max.	Rod	Max.	Weight
in-lbs/	Self-Con-	Air/Oil	-1	-2	-3	-4	Return	Return	Reset	Side Load	lbs
Cycle	tained	Tank	min. max.	min. max.	min. max.	min. max.	Force	Force	Time	Angle	
	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	lbs	lbs	sec	۰	
32,000	9,600,000	12,000,000	1,600- 4,800	4,000-12,000	10,000- 30,000	25,000- 75,000	48	63	0.25	3	28.2
64,000	12,000,000	15,000,000	3,200- 9,600	8,000-24,000	20,000- 80,000	50,000-150,000	34	63	0.5	3	32.6
96,000	14,400,000	18,000,000	4,800-14,400	12,000-36,000	30,000- 90,000	75,000-225,000	34	90	0.6	3	37.2
128,000	16,800,000	21,000,000	6,400-19,200	16,000-48,000	40,000-120,000	100,000-300,000	51	144	0.7	3	42.6
160,000	19,200,000	24,000,000	8,000-24,000	20,000-60,000	50,000-150,000	125,000-375,000	35	101	0.8	3	50.2
	² E ₃ in-lbs/ Cycle 32,000 64,000 96,000 128,000	² E ₃ 3 E ₄ in-lbs/ Cycle 32,000 9,600,000 64,000 12,000,000 128,000 16,800,000	in-lbs/ Self-Con- tained Air/Oil Cycle Tank Tank in-lbs/h in-lbs/h in-lbs/h 32,000 9,600,000 12,000,000 64,000 12,000,000 15,000,000 96,000 14,400,000 18,000,000 128,000 16,800,000 21,000,000	² E ₃ ³ E ₄ ³ E ₄ with in-lbs/ Self-Con- tained Air/Oil -1 Cycle tained Tank Ibs/h Ibs/h 32,000 9,600,000 12,000,000 1,600- 4,800 4,800 64,000 14,400,000 18,000,000 4,800- 14,400 12,000,000 4,800- 14,400 128,000 16,800,000 21,000,000 6,400- 19,200 12,000,000 6,400- 19,200	Soft ² E ₃ ³ E ₄ ³ E ₄ with Air/Oil -1 -2 Cycle tained Tank min. max. bs bs 32,000 9,600,000 12,000,000 1,600- 4,800 4,000-12,000 64,000 12,000,000 15,000,000 3,200- 9,600 8,000-24,000 96,000 14,400,000 18,000,000 6,400-19,200 16,000-48,000	² E ₃ ³ E ₄ ³ E ₄ with Soft in-lbs/ Self-Con- tained Air/Oil -1 -2 -3 Gycle tained Tank min. max. min. max. min. max. Ibs 32,000 9,600,000 12,000,000 1,600- 4,800 4,000-12,000 10,000- 30,000 64,000 15,000,000 3,200- 9,600 8,000-24,000 20,000- 80,000 96,000 14,400,000 18,000,000 4,800-14,400 12,000-36,000 30,000- 90,000 128,000 16,800,000 21,000,000 6,400-19,200 16,000-48,000 40,000-120,000	Soft Hard ² E ₃ ³ E ₄ ³ E ₄ with in-lbs/ ³ E ₄ with Air/Oil -1 -2 -3 -4 Cycle tained Tank min. max. min. max. min. max. lbs lbs lbs 32,000 9,600,000 12,000,000 16,000-4,800 4,000-12,000 10,000-30,000 25,000-75,000 64,000 15,000,000 3,200- 9,600 8,000-24,000 20,000- 80,000 50,000-150,000 96,000 14,400,000 18,000,000 4,800-14,400 12,000-36,000 30,000- 90,000 75,000-225,000 128,000 16,800,000 21,000,000 6,400-19,200 16,000-48,000 40,000-120,000 100,000-300,000	² E ₃ ³ E ₄ ³ E ₄ with in-lbs/ ³ E ₄ with Self-Con- tained ³ E ₄ with Tank ⁻¹ ⁻² ⁻³ ⁻⁴ Return Return System Tank min. max. min. max. min. max. min. max. min. max. Force 32,000 9,600,000 12,000,000 16,000-4,800 4,000-12,000 10,000- 30,000 25,000- 75,000 48 64,000 12,000,000 15,000,000 3,200- 9,600 8,000-24,000 20,000- 80,000 50,000-150,000 34 96,000 14,400,000 18,000,000 6,400-19,200 16,000-48,000 40,000-120,000 100,000-300,000 51	Soft Hard 2 E ₃ 3 E ₄ 3 E ₄ with in-lbs/ -1 -2 -3 -4 Return Return Return Cycle tained Tank min. max. min. max. min. max. min. max. Bbs Ibs Ibs	Soft Hard 2 E ₃ 3 E ₄ 3 E ₄ with in-lbs/ 3 E ₄ with Air/Oil -1 -2 -3 -4 Return Return Reset Cycle tained Tank min. max. min. max. min. max. min. max. min. max. Force Force Force Force Time 32,000 9,600,000 12,000,000 16,000 + 4,800 4,000-12,000 10,000 - 30,000 25,000 - 75,000 48 63 0.25 64,000 15,000,000 3,800 - 14,400 12,000-36,000 30,000 - 90,000 75,000-225,000 34 90 0.6 128,000 16,800,000 21,000,000 6,400-19,200 16,000-48,000 40,000-120,000 100,000-300,000 51 144 0.7	Soft Hard 2 E ₃ 3 E ₄ 3 E ₄ with in-lbs// tained 3 E ₄ with Tank -1 -2 -3 -4 Return Return Reset Side Load Cycle tained Tank min. max. min. max. min. max. min. max. min. max. Return Return Reset Side Load 32,000 9,600,000 12,000,000 16,000-4,800 4,000-12,000 10,000- 30,000 25,000- 75,000 48 63 0.25 3 96,000 14,400,000 18,000,000 4,800-14,400 12,000-36,000 30,000-90,000 50,000-25,000 34 90 0.6 3 128,000 16,800,000 21,000,000 6,400-19,200 16,000-48,000 40,000-120,000 100,000-300,000 51 144 0.7 3

Capacity	Chart A2
----------	----------

	Max. Energy Capa	city	¹ Effective	Weight We					
² E ₃ in-lbs/Cycle	³ E ₄ Self-Contained in-Ibs/h	³ E ₄ with Air/Oil Tank in-Ibs/h	me min. Ibs	me max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Rod Reset Time sec	Max. Side Load Angle °	Weight Ibs
32,000	9,600,000	12,000,000	560	170,000	48	63	0.25	3	31.5
80,000	12,000,000	15,000,000	560	180,000	34	63	0.5	3	36.9
120,000	14,400,000	18,000,000	570	190,000	34	90	0.6	3	42.6
170,000	16,800,000	21,000,000	580	200,000	51	144	0.7	3	49.1
210,000	19,200,000	24,000,000	720	250,000	35	101	0.8	3	57.8
	² E ₃ in-lbs/Cycle 32,000 80,000 120,000 170,000	Max. Energy Capa ² E ₃ ³ E ₄ in-lbs/Cycle Self-Contained 32,000 9,600,000 80,000 12,000,000 120,000 14,400,000 170,000 16,800,000	Max. Energy Capacity ² E ₃ ³ E ₄ ³ E ₄ in-lbs/Cycle Self-Contained in-lbs/h with Air/Oil Tank in-lbs/h 32,000 9,600,000 12,000,000 80,000 12,000,000 15,000,000 120,000 16,800,000 21,000,000	Max. Energy Capacity 1 Effective 2 E3 3 E4 3 E4 me min. in-lbs/Cycle Self-Contained in-lbs/h with Air/Oil Tank in-lbs/h lbs 32,000 9,600,000 12,000,000 560 80,000 12,000,000 15,000,000 560 120,000 14,400,000 18,000,000 570 170,000 16,800,000 21,000,000 580	I Effective Weight We ² E ₃ ³ E ₄ ³ E ₄ me min. me max. in-lbs/Cycle Self-Contained in-lbs/h with Air/Oil Tank in-lbs/h Ibs Ibs 32,000 9,600,000 12,000,000 560 170,000 80,000 12,000,000 15,000,000 560 180,000 120,000 16,800,000 21,000,000 580 200,000	Max. Energy Capacity 1 Effective Weight We ² E ₃ ³ E ₄ ³ E ₄ me min. me max. Min. in-lbs/Cycle Self-Contained with Air/Oil Tank Ibs Ibs Return Force 32,000 9,600,000 12,000,000 560 170,000 48 80,000 12,000,000 15,000,000 560 180,000 34 120,000 16,800,000 21,000,000 580 200,000 51	Max. Energy Capacity 1 Effective Weight We ² E ₃ ³ E ₄ ³ E ₄ me min. me max. in-lbs/Cycle Self-Contained with Air/Oil Tank Ibs Ibs Min. Max. 32,000 9,600,000 12,000,000 560 170,000 48 63 30,000 12,000,000 15,000,000 570 190,000 34 90 120,000 16,800,000 21,000,000 580 200,000 51 144	I Effective Weight We ² E ₃ ³ E ₄ ³ E ₄ ^{me min.} me max. Min. Max. Rod in-lbs/Cycle Self-Contained with Air/Oil Tank Ibs Ibs Return Force Return Force Reset Time 32,000 9,600,000 12,000,000 560 170,000 48 63 0.25 80,000 12,000,000 15,000,000 560 180,000 34 63 0.5 120,000 14,400,000 18,000,000 570 190,000 34 90 0.6 170,000 16,800,000 21,000,000 580 200,000 51 144 0.7	I Effective Weight We ² E ₃ ³ E ₄ ³ E ₄ ³ E ₄ ^{me min.} ^{me max.} Min. Max. Rod Max.Side in-lbs/Cycle Self-Contained with Air/Oil Tank Ibs Ibs Ibs Bas Bas Return Force Return Force Reset Time Load Angle 32,000 9,600,000 12,000,000 560 170,000 48 63 0.25 3 80,000 12,000,000 15,000,000 560 180,000 34 63 0.5 3 120,000 14,400,000 18,000,000 570 190,000 34 90 0.6 3 170,000 16,800,000 21,000,000 580 200,000 51 144 0.7 3


¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

³ Figures for oil recirculation systems on request.

Self-Compensating and Adjustable

 A3x12
 390,000
 48,000,000
 60,000,000
 1,350
 450,000

 1 The effective weight energy limits are bergined as beyond to consider a days
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

¹ The effective weight range limits can be raised or lowered to special order.

32 000 000

² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

40 000 000

1,200

³ Figures for oil recirculation systems on request.

250 000

A3x8

54

400 000

62

60

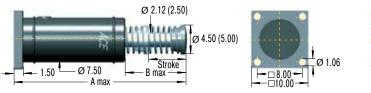
162

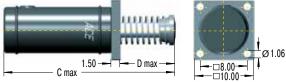
160

08

1.2

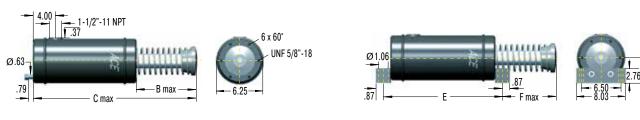
3

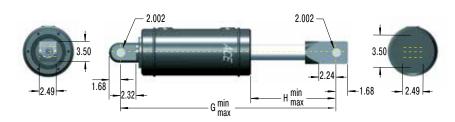

3


84 9

105.0

Rear Flange - R




55

Dimension in () for model CA4x16 only

6 Tapped Holes (Primary Mounting) FRP

Ordering Example	CA4x8R-5
Self-Compensating	
Bore Size Ø 4"	
Stroke Length 8" (203 mm)	
Rear Flange Mounting	
Effective Weight Range Version	

Model Type Prefix

Front Flange -F

Foot Mounting -S

- CA = self-contained with return spring (This is standard model)
- CAA = air/oil return without return spring. Use only with external air/oil tank.
- CNA = self-contained without return spring
- CSA = air/oil return with return spring. Use only with external air/oil tank.

Dimensions CA/CNA/CSA

Dimension	3 0A/ 011A/ 00A								
Туре	Stroke inches	А	В	С	D	E	F	G	Н
4x6	6.00	28.21	10.96	26.71	9.46	17.50	10.09	31.03 - 33.03	10.90 - 12.90
4x8	8.00	32.21	12.96	30.71	11.46	19.50	12.09	35.03 - 37.03	12.90 - 14.90
4x16	16.00	51.21	23.96	49.71	22.46	27.50	23.09	51.03 - 56.03	20.90 - 25.90

Dimensions of model CAA available on request.

Capacity Chart CA4 Max. Energy Capacity ¹ Effective Weight We Soft Hard 2 E3 E₄ Self-E4 with Oil Туре E₄ with Min. Return Max. Return Rod Weight -3 -5 -7 in-lbs/ Contained Air/Oil Tank Recirculation min. max. min max. min. max. Force Force Reset Time lbs Cycle in-lbs/h in-lbs/h in-lbs/h lbs lbs lbs lbs lbs sec CA4x6 420,000 27,000,000 45,000,000 58,400,000 8,000 - 19,000 19,000 - 41,000 41,000 - 94,000 108 222 1.8 132 CA4x8 560,000 30,000,000 50,000,000 64,600,000 11,000 - 25,000 25,000 -55,000 55,000 - 125,000 222 2.3 150 71 CA4x16 1,120,000 50,000,000 85,000,000 109,800,000 22,000 - 50,000 50,000 - 110,000 110,000 - 250,000 71 222 Ask 321

¹ The effective weight range limits can be raised or lowered to special order.

² For emergency use only applications it may be possible to exceed these max. capacity ratings. Please consult ACE for further details.

With heavy loads or high velocities normal cylinder cushions are often overloaded. This causes shock loading leading to premature cylinder failure or excessive maintenance. Using oversized cylinders to withstand this shock loading is not the best solution since this considerably increases air consumption and costs.

The side loading is removed from the shock absorber piston rod leading to considerably

longer life. See page 36 for more details.

2 Side load adaptor for high side load angles

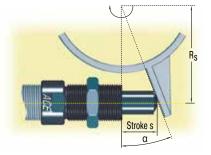
3 Undamped free travel with

damped end position

1 ACE Shock absorbers for

pneumatic cylinders

reduced air consumption

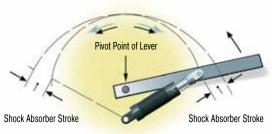

smaller valves and pipework

Example: MA3350-Z (cylinder mounting)

For: optimum deceleration

smaller cylinders

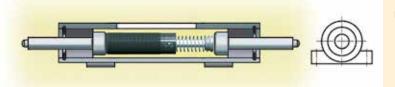
higher speeds


Free Travel

3

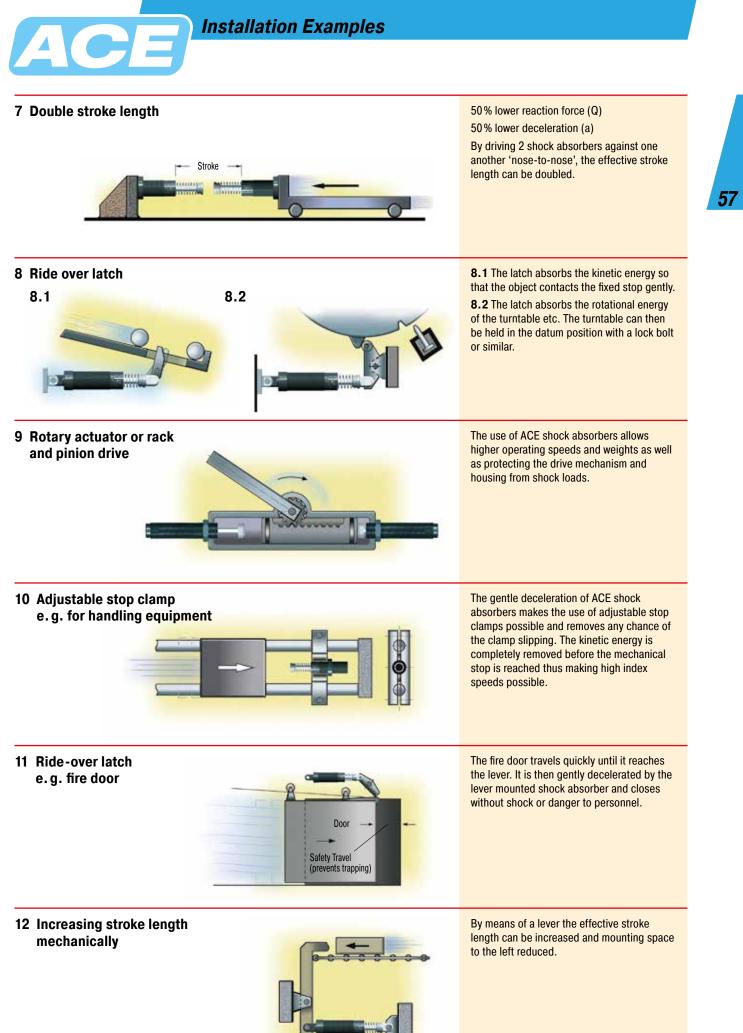
Seal with Teflon Tape or Sealant

The lever 1 swings with the pin 2 in a slotted hole around pivot point 3. The lever is smoothly decelerated at the extreme end of its travel.

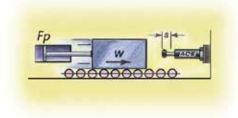

4 One shock absorber for both ends of travel

It is possible to use only one shock absorber for both end positions by using different pivot points as shown.

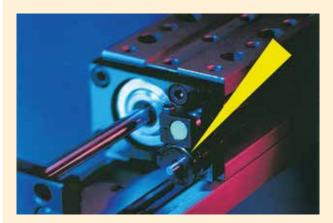
Tip: Leave approx. 0.06 inches of shock absorber stroke free at each end of travel.


5 Double acting shock absorber

With a little additional work a normal unidirectional shock absorber can be converted to work in 2 directions by using a mechanism as shown.


By using the air bleed adaptor the operating lifetime of shock absorbers in aggressive environments can be considerably increased. The adaptor protects the shock absorber seals from cutting fluids, cleaning agents, cooking oil, etc. by using a low pressure air bleed.

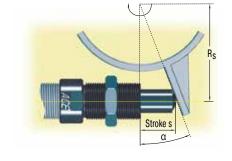
Miniature Shock Absorbers


Application Examples

Constant resisting force

ACE miniature shock absorbers are the right alternative.


This pneumatic module for high precision, high speed motion intentionally abandoned pneumatic end-of-travel damping. The compact miniature shock absorbers of the type **MC25MH-NB** decelerate the linear motion safer and faster when reaching the end-of-travel position. They accept the moving load gently and decelerate it smoothly throughout the entire stroke length. Additional advantages: simpler construction, smaller pneumatic valves, lower maintenance costs as well as reduced compressed air consumption.


Miniature shock absorber in linear pneumatic module

ACE miniature shock absorbers optimize production with minimum expenditure.

The cycle rate for an assembly line producing electronic components was increased to 3600 units/hr by using ACE shock absorbers. Miniature shock absorbers type **SC190M-1** decelerate the rapid transfer movements on the production line and using soft damping methods optimize the pick up and set down of components. This soft deceleration technique has increased production and reduced maintenance on the portal and rotary actuator modules. The optional side load adaptor protects the shock absorber from high side load forces and increases the operating lifetime. Using ACE shock absorbers reduces maintenance costs by 50% and running costs by 20%, diminishing energy consumption.

Optimized production in the electronics industry

Soft end-of-travel damping on rotary movements

 $V(\omega)$

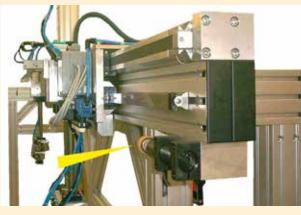
Safe swiveling

Application Examples

ACE industrial shock absorbers offer safety to spare for rotation or braking of a large telescope.

The optical system of this telescope for special observations is moveable in two space coordinates. The structure in which the telescope is mounted weighs 33,069 lbs and consists of a turntable with drives and two wheel disks rotating on bearings. It enables a rotation by \pm 90° from horizon to horizon. To safeguard the telescope in case of overshooting the respective swiveling limits, industrial shock absorbers of the type **ML3325M** are used as braking elements. Should the telescope inadvertently overshoot the permissible swivel range, they will safely damp the travel of the valuable telescope.

59


Perfect overshoot protection for precision telescope

ACE industrial shock absorbers optimize portal for machine loading and increase productivity.

This device driven by piston rodless pneumatic cylinders, in which two gripper slides are moving independently of each other at speeds of 6.56 ft/sec to 8.20 ft/sec, is equipped with industrial shock absorbers as brake systems. Their function is to stop a mass of 55 lbs up to 540 times per hour. The model **MC3350M-1-S** was chosen for this application, allowing easy and extremely accurate adjustment of the end positions of the adjustable limit stops. In comparison to brake systems with other function principles, shock absorbers allow higher travel speeds and shorter cycle sequences.

Quicker, gentle positioning

Industrial shock absorbers optimize portal operation

Safety Shock Absorbers SCS33 to SCS64

Based on the innovative design concepts of the MAGNUM range, ACE introduces the SCS33 to SCS64 series of safety shock absorbers. Designed to provide machine protection in an emergency runaway situation the SCS33 to SCS64 series provide a cost effective method of protecting vital machinery in emergency stop situations. Specially optimized orificing design provides extremely high capacity in a compact envelope size making them ideal for critical applications on portal gantry systems, automatic transfer machines and robot systems where an emergency runaway could otherwise result in expensive damage or danger. With up to 300 % higher capacity than other shock absorber designs the SCS33 to 64 range provides true linear deceleration protecting vital equipment at an affordable cost.

Rod Button

Integrated Positive Stop

Main Bearing

Rod Seals

Fully Threaded Outer Body

Membrane Accumulator

Piston
 Piston Ring

One Piece Pressure Chamber with Optimized Metering Orifices to Suit Specific Application

Heavy Duty One-Piece Steel Outer Body

Unique Identification Code Number

Impact cycles per hour: max. 1

Life expectancy: Self-compensating version: max. 1000 cycles. Optimized version: max. 5 cycles.

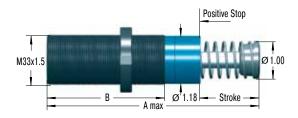
Impact velocity range: On request

Operating fluid: Automatic Transmission Fluid (ATF)

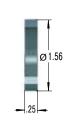
Material: Shock absorber body: Nitride hardened steel. Accessories: Steel with black oxide finish. Piston rod: Steel hardened and chrome plated. Rod end button: Hardened steel with black oxide finish. Return Spring: Zinc plated or plastic-coated.

Energy capacity E₃: At max. side load angle do not exceed 80 % of rated max. energy capacity below.

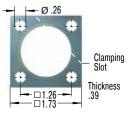
Mounting: In any position


Operating temperature range: 10 °F to 158 °F. For higher and lower temperatures consult ACE.

In creep speed: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.



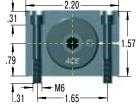
Safety Shock Absorbers SCS33


Standard Dimensions

250-0292

Locking Ring

250-0659


Square Flange Install with 4 machine screws Tightening torque: 8.1 ft-lbs Clamping torque: > 66.4 ft-lbs

250-0151

Side Foot Mounting Kit

S33 = 2 flanges + 4 screws M6x40, DIN 912 Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

SCS33-50-1xxxx

Tightening torque: 8.1 ft-lbs (screws) Clamping torque: > 66.4 ft-lbs

Ordering Example

Safety Shock Absorber	ł	ŧ	ŧ	
Thread Size M33				
Max. Stroke without Positive Stop 1.97" (50 mm)				
Identification No. assigned by ACE				

Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

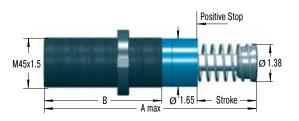
Moving load Impact velocity range	W v	(lbs) (ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 11 to 13.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

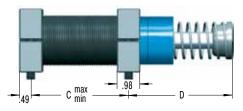
							Max. Energ	y Capacity				
Туре	Stroke inches	A max inches	B inches	C min inches	C max inches	D inches	Self-Compensating E ₃ in-Ibs/Cycle	Optimized Version E ₃ in-Ibs/Cycle	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle	Weight Ibs
SCS33-25 SCS33-50	0.91 1.91	5.44 7.44	3.27 4.25	0.98 1.26	2.36 3.39	2.68 3.66	2,744 5,487	4,425 8,408	10.1 10.1	20.2 30.3	3	1.00 1.20



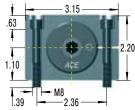
Safety Shock Absorbers SCS45

250-0297

Ø 2.25


Locking Ring

Standard Dimensions


250-0683

62

Side Foot Mounting Kit

 $\begin{array}{l} S45 = 2 \ flanges + 4 \ screws \ M8x50, \ DIN \ 912 \\ Because \ of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position. \end{array}$

SCS45-50-1xxxx

Tightening torque: 19.9 ft-lbs (screws) Clamping torque: > 258 ft-lbs

Ordering Example

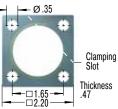
Safety Shock Absorber _______
Thread Size M45 ______
Max. Stroke without Positive Stop **1.97**" (50 mm) ______
Identification No. assigned by ACE ______

Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

	· · J	
Moving load	W	(lbs)
Impact velocity range	v	(ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

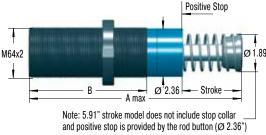
or technical data according to formulae and calculations on page 11 to 13.


The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

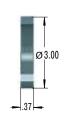
Dimensions	and	Canacity	Chart
Dimensions	anu	Capacity	Unart

		• •										
							Max. Energ	y Capacity				
							Self-Compensating	Optimized Version				
Туре	Stroke	A max	В	C min	C max	D	E ₃	E ₃	Min. Return	Max. Return	Max. Side	Weight
	inches	inches	inches	inches	inches	inches	in-lbs/Cycle	in-lbs/Cycle	Force	Force	Load Angle	lbs
									lbs	lbs	0	
SCS45-25	0.91	5.71	3.74	1.26	2.60	2.60	6,019	10,621	15.7	22.5	3	2.49
SCS45-50	1.91	7.68	4.72	1.57	3.58	3.58	12,037	20,799	15.7	32.6	2	3.00
SCS45-75	2.91	9.69	5.71	1.97	4.65	4.57	18,056	30,978	11.2	40.5	1	3.51
SCS45-75	2.91	9.69	5.71	1.97	4.65	4.57	18,056	30,978	11.2	40.5	1	3.51

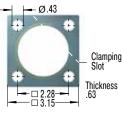
For other stroke lengths, special options (such as higher or lower impact velocity etc.), please consult ACE.


250-0689

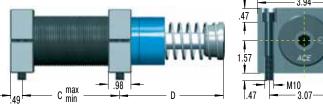
Square Flange Install with 4 machine screws Tightening torque: 19.9 ft-lbs Clamping torque: > 147.5 ft-lbs



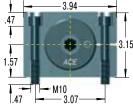
Safety Shock Absorbers SCS64


Standard Dimensions

250-0301


Locking Ring

250-0172


Square Flange Install with 4 machine screws Tightening torque: 37 ft-lbs Clamping torque: > 155 ft-lbs

250-0693

Side Foot Mounting Kit

S64 = 2 flanges + 4 screws M10x80, DIN 912 Because of the thread pitch the fixing holes for the second foot mount should only be drilled and tapped after the first foot mount has been fixed in position.

SCS64-50-1xxxx

Tightening torque: 37 ft-lbs (screws) Clamping torque: > 258 ft-lbs

Ordering Example

Safety Shock Absorber Thread Size M64 Max. Stroke without Positive Stop 1.97" (50 mm) Identification No. assigned by ACE

Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

Moving load	W	(lbs)
Impact velocity range	v	(ft/sec) max.
Creep speed	vs	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Stall torque factor Number of absorbers in parallel		(normal 2.5)

or technical data according to formulae and calculations on page 11 to 13.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Dimensions and Capacity Chart

							Max. Enerç	y Capacity				
Туре	Stroke inches	A max inches	B inches	C min inches	C max inches	D inches	Self-Compensating E ₃ in-Ibs/Cycle	Optimized Version E ₃ in-Ibs/Cycle	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle	Weight Ibs
SCS64-50	1.91	8.86	5.51	1.97	4.41	3.94	30,093	53,104	20.2	34.8	3	7.01
SCS64-100	3.92	12.83	7.52	2.52	6.38	5.98	60,185	106,209	23.6	60.7	2	9.26
SCS64-150	5.91	17.72	9.49	3.15	8.35	8.90	90,278	159,313	16.9	82.1	1	12.46

Safety Shock Absorbers SCS38 to SCS63

ACE safety shock absorbers are selfcontained and maintenance-free. They are designed for emergency deceleration and are an economic alternative to industrial shock absorbers. The SCS series units are available with operating strokes up to 47.24" and are specially orificed to provide a smooth constant deceleration throughout their entire stroke length. The internal hydraulic pressure and thus the braking force, is maintained at a constant safe level to bring the fast moving load gently to rest in an emergency. Applications specially include conveyor systems, automated storage, cranes and heavy machines. Optional rod sensor available for indicating the complete extension of the piston rod.

Rod Button

Piston Rod

Positive Stop

Rod Seals

Main Bearing

Gas Accumulator

Bladder Accumulator

- Outer Body

Pressure Chamber

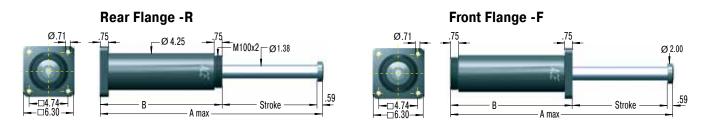
Metering Orifices

Function: In the normal "ready" condition the piston rod is fully extended. When the impact load strikes the absorber the hydraulic oil behind the piston is forced out through a series of metering orifices. The number of metering orifices in action reduces proportionally though the stroke and the load velocity is thereby smoothly reduced to zero. The internal pressure and thus the reaction force (Q) remains constant throughout the entire stroke length. The displaced oil is stored in the bladder accumulator. The integrated gas chamber, containing low pressure nitrogen, provides the return force to reset the rod to its extended position and functions as an accumulator for the hydraulic oil displaced during the operation.

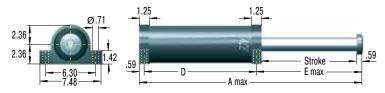
Material: Steel body with black oxide finish. Piston rod hard chrome plated.

Energy capacity E_3: At max. side load angle do not exceed 80 % of rated max. energy capacity below.

Filling pressure: Approx. 29 psi


Operating temperature range: 10 °F to 150 °F

On request: Integrated rod sensor for indicating the complete extension of the piston rod. Type normally closed or normally open, option PNP or NPN switch.


In creep speed: It is possible to use up to approx. 60 % of the buffer stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

SCS38-400-F-X

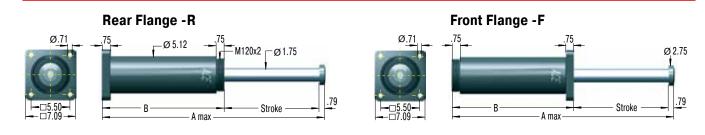
Safety Shock Absorber	_	ŧ	ŧ	ŧ	ł
Bore Size Ø 1.50" (38 mm)					
Stroke 15.75" (400 mm)					
Mounting Style: Front Flange					
Identification No. assigned by ACE					
Please indicate identification no. in case of repla	cem	nent	ord	er	

Complete Details Required when Ordering

Impact velocity range Creep speed Motor power Stall torque factor	W v vs HP ST n	(lbs) (ft/sec) max. (ft/sec) (horsepower) (normal 2.5)
--	-------------------------------	--

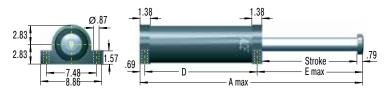
65

or technical data according to formulae and calculations on page 11 to 13.


The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Impact velocity range: 3 to 15 ft/sec Reacting force Q: At max. capacity rating = 18,000 lbs max.


Dimension	s and Cap	acity Ch	art									
						Max. Energy Capacity						
									Mounti	ng Style	Mountir	ng Style
Туре	Stroke inches	A max inches	B inches	D inches	E max inches	E ₃ in-lbs/Cycle	Min. Return Force Ibs	Max. Return Force Ibs	F & S Max. Side Load Angle	R Max. Side Load Angle °	F & R Weight Ibs	S Weight Ibs
SCS38-50	1.97	10.63	8.07	6.89	3.15	32,000	135	157	5	4	27.3	29.1
SCS38-100	3.94	14.57	10.04	8.77	5.21	64,000	135	157	5	4	32.0	33.8
SCS38-150	5.91	18.50	12.01	10.83	7.08	96,000	135	157	5	4	35.9	37.8
SCS38-200	7.87	22.44	13.98	12.80	9.05	127,000	135	157	5	4	39.9	41.7
SCS38-250	9.84	26.38	15.94	14.77	11.02	159,000	135	157	4.7	3.7	43.8	45.6
SCS38-300	11.81	30.91	18.50	17.33	12.99	191,000	135	157	3.9	2.9	48.9	50.7
SCS38-350	13.78	34.84	20.47	19.29	14.96	223,000	135	157	3.4	2.4	52.8	54.6
SCS38-400	15.75	39.37	23.03	21.85	16.93	255,000	135	157	3	2	57.9	59.7
SCS38-500	19.69	47.83	27.56	26.38	20.56	319,000	135	157	2.4	1.4	66.9	68.7
SCS38-600	23.62	56.30	32.09	30.91	24.80	382,000	135	157	1.9	0.9	75.9	77.7
SCS38-700	27.56	64.76	36.61	35.43	28.74	446,000	135	157	1.6	0.6	84.9	86.7
SCS38-800	31.50	73.23	41.14	39.97	32.67	510,000	135	157	1.3	0.3	93.9	95.7

Foot Mounting -S

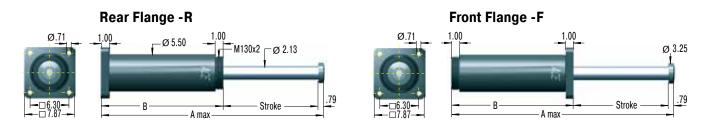
SCS50-400-F-X

Ordering Example

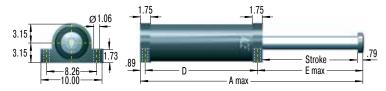
Safety Shock Absorber	ŧ	ŧ	ŧ
Bore Size Ø 1.97 " (50 mm)			
Stroke 15.75" (400 mm)			
Mounting Style: Front Flange			
Identification No. assigned by ACE			
Please indicate identification no. in case of replacement	t ord	der	

Complete Details Required when Ordering

or technical data according to formulae and calculations on page 11 to 13.


The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data


Impact velocity range: 2 to 15 ft/sec Reacting force Q: At max. capacity rating = 36,000 lbs max.

Dimensions	s and Cap	acity Ch	art									
						Max. Energy Capacity						
									Mountir	ng Style	Mounti	ng Style
Туре	Stroke inches	A max inches	B inches	D inches	E max inches	E ₃ in-Ibs/Cycle	Min. Return Force Ibs	Max. Return Force Ibs	F & S Max. Side Load Angle	R Max. Side Load Angle °	F & R Weight Ibs	S Weight Ibs
SCS50-100	3.94	15.35	10.63	9.25	5.41	124,000	225	270	5	4	48.1	51.3
SCS50-150	5.91	19.29	12.60	11.22	7.38	186,000	225	270	5	4	53.7	57.0
SCS50-200	7.87	23.23	14.57	13.19	9.35	248,000	225	270	5	4	59.1	62.3
SCS50-250	9.84	27.17	16.54	15.16	11.32	310,000	225	270	4.5	3.5	64.9	68.1
SCS50-300	11.81	31.69	19.09	17.71	13.29	372,000	225	270	3.8	2.8	71.6	74.9
SCS50-350	13.78	35.63	21.06	19.69	15.25	434,000	225	270	3.3	2.3	77.2	80.4
SCS50-400	15.75	40.16	23.62	22.25	17.22	496,000	225	270	2.9	1.9	84.2	87.5
SCS50-500	19.69	48.62	28.15	26.77	21.16	620,000	225	270	2.3	1.3	96.8	100.1
SCS50-600	23.62	57.09	32.68	31.30	25.10	743,000	225	270	1.9	0.9	109.4	112.7
SCS50-700	27.56	65.55	37.20	35.83	29.03	867,000	225	270	1.6	0.6	122.0	125.2
SCS50-800	31.50	74.02	41.73	40.36	32.97	991,000	225	270	1.3	0.3	134.6	137.8
SCS50-1000	39.37	90.94	50.79	49.40	40.85	1,239,000	225	270	1	0	159.7	163.0

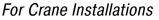
SCS63-400-F-X

Safety Shock Absorber	↑ ↑	. ▲ ▲	•
Bore Size Ø 2.48 " (63 mm)			
Stroke 15.75" (400 mm)			
Mounting Style: Front Flange			
Identification No. assigned by ACE _			
Please indicate identification no	in case of replacement	order	

Complete Details Required when Ordering

67

or technical data according to formulae and calculations on page 11 to 13.


The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Impact velocity range: 1.6 to 15 ft/sec Reacting force Q: At max. capacity rating = 47,200 lbs max.

Dimensions	and Cap	acity Ch	art									
						Max. Energy Capacity						
									Mountir	ng Style	Mountir	ng Style
Туре	Stroke inches	A max inches	B inches	D inches	E max inches	E ₃ in-Ibs/Cycle	Min. Return Force Ibs	Max. Return Force Ibs	F & S Max. Side Load Angle	R Max. Side Load Angle °	F & R Weight Ibs	S Weight Ibs
SCS63-100	3.94	15.94	11.22	9.47	5.59	159,000	337	562	5	4	62.8	71.2
SCS63-150	5.91	19.88	13.19	11.44	7.56	239,000	337	562	5	4	69.6	78.0
SCS63-200	7.87	23.82	15.16	13.41	9.53	319,000	337	562	5	4	76.4	84.7
SCS63-250	9.84	27.76	17.13	15.39	11.49	398,000	337	562	5	4	83.2	91.6
SCS63-300	11.81	31.69	19.09	17.35	13.46	478,000	337	562	5	4	90.0	98.3
SCS63-350	13.78	36.42	21.85	20.11	15.43	558,000	337	562	5	4	99.3	107.7
SCS63-400	15.75	40.35	23.82	22.01	17.40	637,000	337	562	5	4	106.1	114.5
SCS63-500	19.69	49.02	28.54	26.80	21.34	797,000	337	562	4.2	3.2	122.3	130.7
SCS63-600	23.62	56.89	32.48	30.74	25.30	956,000	337	562	3.4	2.4	135.9	144.2
SCS63-700	27.56	65.55	37.20	35.46	29.21	1,115,000	337	562	2.9	1.9	152.0	160.4
SCS63-800	31.50	73.43	41.14	39.40	33.15	1,275,000	337	562	2.5	1.5	165.6	174.0
SCS63-1000	39.37	89.96	49.80	48.06	41.02	1,593,000	337	562	1.9	0.9	195.4	203.7
SCS63-1200	47.24	106.50	58.46	56.72	48.90	1,912,000	337	562	1.4	0.4	225.1	233.5

ACE safety shock absorbers are selfcontained and maintenance-free. They are designed for emergency deceleration and are an economic alternative to industrial shock absorbers. The primary oil seals are protected inside the main body and only a wiper seal is necessary on the piston rod. Dirt or contamination on the piston rod does not cause oil leakage or failure as is often the case with conventional buffers. The integrated gas accumulator enables the CB Series safety shock absorbers to provide return forces of up to 15,869 lbs. This high return force is necessary for multiple-bridge cranes where the buffers must separate the bridges after an emergency collision. Normal buffers would remain compressed after such a collision and would not be capable of accepting further impacts. The robust, large dimensioned piston rod bearing system, is designed for very heavy duty use and is equivalent to that used in other buffers 80 % larger in size. The CB series units are custom orificed to suit your specific application and provide a smooth constant deceleration throughout their complete stroke length.

Separator Piston

— Seals — Piston - Hydraulic Oil Metering Orifices

Pressure Chamber

Function: In the normal "ready" condition the piston rod is fully extended. When the impact load strikes the absorber the hydraulic oil behind the piston is forced through a series of metering orifices. The number of metering orifices in action reduces proportionally through the stroke and the load velocity is thereby reduced to zero. The internal pressure and thus the reaction force (Q) remains constant throughout the entire stroke length. The displaced oil is directed inside the piston rod where a separator piston keeps the oil and the nitrogen gas apart. The integrated gas accumulator, containing low pressure nitrogen, provides the high return force to reset the rod to its extended position and generates the high return forces

to comply with crane installations. Impact velocity range:

1.6 to 15 ft/sec

Material: Steel body with black oxide finish. Piston rod hard chrome plated.

Operating temperature range: 10 °F to 150 °F

Initial fill pressure: governs the rod return force.

In creep speed: The shock absorber can be pushed through its stroke.

Rod Button

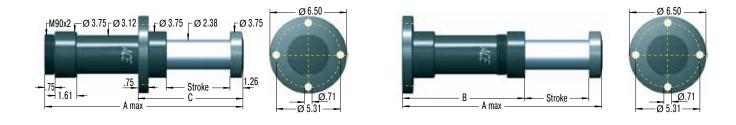
Piston Tube

Gas Accumulator

Positive Stop

Rod Wiper

Mounting Flange



Safety Shock Absorbers CB63

For Crane Installations

Front Flange -F

Rear Flange - R

 Bore Size Ø 2.48" (63 mm)

 Stroke 15.75" (400 mm)

 Mounting Style: Front Flange

 Identification No. assigned by ACE

Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

Moving load	W	(lbs)
Impact velocity range	v	(ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 11 to 13.

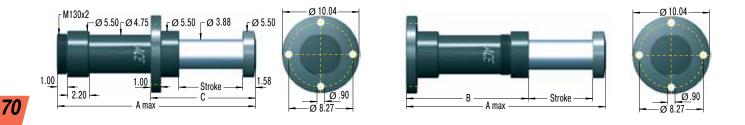
The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Reacting force Q: At max. capacity rating = 42,000 lbs max. Rod return: Nitrogen accumulator (81 psi to 86 psi)

Dimensions and Capacity Chart

					Max. Energy Capacity	¹ Effective	¹ Effective Weight We				
Туре	Stroke inches	A max inches	B inches	C inches	E ₃ in-Ibs/Cycle	me min. Ibs	me max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle °	Weight Ibs
CB63-100	3.94	16.54	11.34	7.56	141,600	3,330	282,000	393	4,110	3.5	28.0
CB63-200	7.87	27.56	18.43	11.50	283,200	6,660	564,000	393	5,392	3	36.8
CB63-300	11.81	38.58	25.51	15.43	424,800	10,010	847,000	393	6,038	2.5	45.8
CB63-400	15.75	49.61	32.60	19.37	566,400	13,340	1,129,000	393	6,404	2	54.6
CB63-500	19.69	60.63	39.69	23.31	708,000	16,670	1,411,000	393	6,660	1.5	63.5


¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band. **Special options:** Special oils, special flanges, additional corrosion protection etc. available on request.

Safety Shock Absorbers CB100

Front Flange -F

Rear Flange - R

CB100-400-F-X **Ordering Example** Safety Shock Absorber Bore Size Ø 3.94" (100 mm) Stroke 15.75" (400 mm) Mounting Style: Front Flange Identification No. assigned by ACE Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

Moving load	W	(lbs)
Impact velocity range	V	(ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

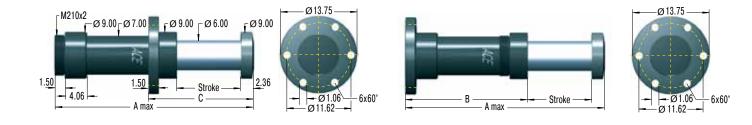
or technical data according to formulae and calculations on page 11 to 13.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Reacting force Q: At max. capacity rating = 105,000 lbs max. Rod return: Nitrogen accumulator (81 psi to 86 psi)

Dimensions and Capacity Chart


					Max. Energy Capacity	¹ Effective Weight We					
Туре	Stroke inches	A max inches	B inches	C inches	E ₃ in-lbs/Cycle	me min. Ibs	me max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle °	Weight Ibs
CB100-200	7.87	28.94	19.49	12.60	708,000	16,670	1,411,000	1,005	9,917	4	93.7
CB100-300	11.81	39.57	26.18	16.54	1,062,000	25,000	2,116,000	1,005	12,540	3.5	112.1
CB100-400	15.75	50.20	32.87	20.47	1,416,000	33,330	2,822,000	1,005	14,459	3	130.4
CB100-500	19.69	60.83	39.57	24.41	1,770,000	41,670	3,527,000	1,005	15,916	2.5	148.7
CB100-600	23.62	71.46	46.26	28.35	2,124,000	50,000	4,233,000	1,005	17,058	2	167.0

¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band. Special options: Special oils, special flanges, additional corrosion protection etc. available on request.

Front Flange -F

Rear Flange - R

Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

	-	
Moving load	W	(lbs)
Impact velocity range	V	(ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 11 to 13.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Reacting force Q: At max. capacity rating = 157,000 lbs max. Rod return: Nitrogen accumulator (81 psi to 86 psi)

Dimensions and Capacity Chart

		-									
			Max. Energy Capacity	¹ Effective Weight We							
Туре	Stroke inches	A max inches	B inches	C inches	E ₃ in-lbs/Cycle	me min. Ibs	me max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle °	Weight Ibs
CB160-400	15.75	55.12	37.01	23.62	2,124,000	50,000	4,233,000	2,455	15,845	4	340.9
CB160-600	23.62	78.74	52.76	31.50	3,186,000	75,000	6,349,000	2,455	15,857	3	414.4
CB160-800	31.50	102.36	68.50	39.37	4,248,000	100,000	8,466,000	2,455	15,869	2	487.9

¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band.

Special options: Special oils, special flanges, additional corrosion protection etc. available on request.

Safety Shock Absorbers EB63 to EB160

The **newly-developed EB series** offers all the advantages of the CB series such as internal system seals, generously dimensioned piston rod bearings and maximum energy absorption for emergency braking. The internal spring assembly in the piston tube ensures reliable extension of the piston rod following compression. Because of the extension via the spring assembly, the extension forces are reduced significantly in comparison to the CB series. The performance curve and damping characteristics of the maintenance-free and ready-to-install EB safety shock absorber, like all ACE safety shock absorbers, is individually tailored to the relevant application.

> **Function:** During the braking process, the piston rod is pushed in. The hydraulic oil in front of the piston is simultaneously expelled through all orifice openings. The number of orifice openings in effect reduces in proportion to the stroke movement. The retraction speed is reduced. The back-pressure created in front of the piston, and therefore the counterforce (Q), remain constant during the complete stroke. The oil volume displaced by the piston rod is compensated for by the separating piston. The piston rod is extended again

Separator Piston

— Seals — Piston Hydraulic Oil Metering Orifices

Pressure Chamber

by the spring assembly in the piston tube.

Impact velocity range: 1.6 to 15 ft/sec

Material: Steel body with black oxide finish. Piston rod hard chrome plated.

Operating temperature range: 10 °F to 150 °F

Initial fill pressure: governs the rod return force.

In creep speed: The shock absorber can be pushed through its stroke.

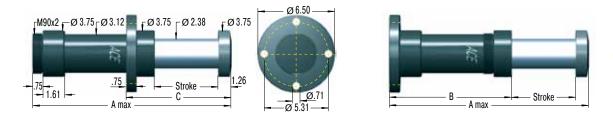
Rod Button

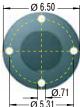
Piston Tube

Spring Package

Gas Accumulator

Positive Stop


Rod Wiper


Mounting Flange

Front Flange -F

Rear Flange - R

Complete Details Required when Ordering

	-	
Moving load	W	(lbs)
Impact velocity range	v	(ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 11 to 13.

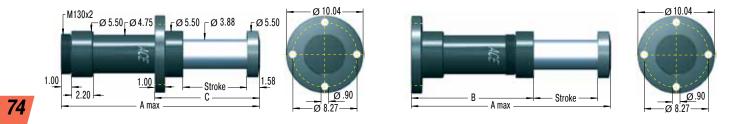
The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Reacting force Q: At max. capacity rating = **42,000 lbs max. Rod return:** Nitrogen accumulator (8 psi to 15 psi) combined with return spring

Dimensions and Capacity Chart

	-	-									
					Max. Energy Capacity	¹ Effective	¹ Effective Weight We				
Туре	Stroke inches	A max inches	B inches	C inches	E ₃ in-lbs/Cycle	me min. Ibs	me max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle °	Weight Ibs
EB63-100	3.94	16.54	11.34	7.56	141,600	3,330	282,000	157	1,562	3.5	30.2
EB63-200	7.87	27.56	18.43	11.50	283,200	6,660	564,000	172	2,084	3	36.8
EB63-300	11.81	38.58	25.51	15.43	424,800	10,010	847,000	187	2,372	2.5	48.1
EB63-400	15.75	49.61	32.60	19.37	566,400	13,340	1,129,000	136	2,496	2	56.9
EB63-500	19.69	60.63	39.69	23.31	708,000	16,670	1,411,000	151	2,691	1.5	65.7


¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band. **Special options:** Special oils, special flanges, additional corrosion protection etc. available on request.

Safety Shock Absorbers EB100

Front Flange -F

Rear Flange - R

Ordering Example EB100-400-F-X Safety Shock Absorber Bore Size Ø 3.94" (100 mm) Stroke 15.75" (400 mm) Mounting Style: Front Flange Identification No. assigned by ACE

Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

Moving load	W	(lbs)
Impact velocity range	v	(ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

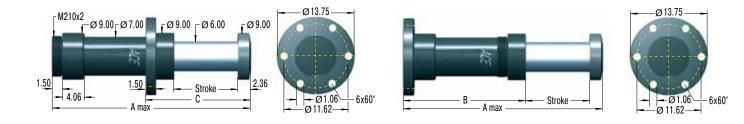
or technical data according to formulae and calculations on page 11 to 13.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Reacting force Q: At max. capacity rating = 105,000 lbs max. Rod return: Nitrogen accumulator (8 psi to 15 psi) combined with return spring

Dimensions and Capacity Chart


					Max. Energy Capacity	¹ Effective	¹ Effective Weight We				
Туре	Stroke inches	A max inches	B inches	C inches	E ₃ in-lbs/Cycle	me min. Ibs	me max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle °	Weight Ibs
EB100-200	7.87	28.94	19.49	12.60	708,000	16,670	1,411,000	271	1,999	4	93.7
EB100-300	11.81	39.57	26.18	16.54	1,062,000	25,000	2,116,000	213	3,163	3.5	112
EB100-400	15.75	50.20	32.87	20.47	1,416,000	33,330	2,822,000	267	4,089	3	130.3
EB100-500	19.69	60.83	39.57	24.41	1,770,000	41,670	3,527,000	209	4,686	2.5	151
EB100-600	23.62	71.46	46.26	28.35	2,124,000	50,000	4,233,000	263	5,248	2	169.3

¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band. Special options: Special oils, special flanges, additional corrosion protection etc. available on request.

Front Flange -F

Rear Flange - R

Ordering Example EB160-400-F-X Safety Shock Absorber _______ A A Bore Size Ø 6.30" (160 mm) ______ A A A Strake 15 75" (400 mm)

Stroke 15.75" (400 mm) ______ Mounting Style: Front Flange _____ Identification No. assigned by ACE _____

Please indicate identification no. in case of replacement order

Complete Details Required when Ordering

Moving load	W	(lbs)
Impact velocity range	v	(ft/sec) max.
Creep speed	VS	(ft/sec)
Motor power	HP	(horsepower)
Stall torque factor	ST	(normal 2.5)
Number of absorbers in parallel	n	

or technical data according to formulae and calculations on page 11 to 13.

The calculation and selection of the correct ACE safety shock absorber for your application should be referred to ACE for approval and assignment of unique identification number.

Technical Data

Reacting force Q: At max. capacity rating = 157,000 lbs max. Rod return: Nitrogen accumulator (8 psi to 15 psi) combined with return spring

Dimensions and Capacity Chart

					Max. Energy Capacity	¹ Effective	Weight We				
Туре	Stroke inches	A max inches	B inches	C inches	E ₃ in-lbs/Cycle	me min. Ibs	me max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Max. Side Load Angle °	Weight Ibs
EB160-400	15.75	55.12	37.01	23.62	2,124,000	50,000	4,233,000	421	4,071	4	343.0
EB160-600	23.62	78.74	52.76	31.50	3,186,000	75,000	6,349,000	474	4,225	3	416.7
EB160-800	31.50	102.36	68.50	39.37	4,248,000	100,000	8,466,000	535	4,380	2	490.1

¹ The correct effective weight range for your application will be calculated by ACE and should fall within this band.

Special options: Special oils, special flanges, additional corrosion protection etc. available on request.

General Instructions

Permitted Use

ACE safety shock absorbers are machine elements to brake moving masses in a defined end position in emergency stop situations for axial forces. The safety shock absorbers are not designed for regular operational usage.

Calculation of safety shock absorbers

The calculation of safety shock absorbers should generally be performed or checked by ACE.

Deceleration Properties

The orifice sizing and drill pattern in the pressure chamber are individually designed for each safety shock absorber. The respective absorption characteristic is optimized corresponding to the maximum mass that occurs in the emergency stop and the impact speed. Correspondingly, each safety shock absorber is given an individual identification number.

Model Code

76

For types SCS33 to 64, the individual five-digit identification numbers can be taken from the last digits of the shock absorber model code shown on the label. Example: SCS33-50-1XXXX. For type series SCS38 to SCS63, CB63 to CB160 and EB63 to EB160, the identification number is a five digit number. Example: SCS38-100-F-XXXXX. In addition to the model code, the label also shows the authorised maximum impact velocity and maximum authorized impact mass for the unit.

Mounting

To mount the shock absorber, we recommend the use of original ACE mounting accessories shown in catalogue. The mounting of each shock absorber must be exactly positioned so that the reaction force (Q) can be adequately transmitted into the mounting structure. ACE recommends installation via the front flange -F mounting style that ensures the maximum protection against buckling. The damper must be mounted so that the moving loads are decelerated with the least possible side loading to the piston rod. The maximum permissable side load angles are detailed in our current catalogue. The entire stroke length must be used for deceleration because only using part of the stroke can lead to overstressing and damage to the unit.

Mounting style front flange -F

Safety Shock Absorber SCS

Safety Shock Absorber CB

Environmental Requirements

The permissible temperature range for each shock absorber type can be found in our current catalogue.

CAUTION: Usage outside the specified temperature range can lead to premature breakdown and damage of of the shock absorbers which can then result in severe system damage or machine failures.

Trouble free operation outdoors or in damp environments is only warranted if the dampers are coated with a specific corrosion protection finish.

Initial Start-Up Checks

First impacts on the shock absorber should only be tried after correctly mounting and with reduced impact speeds and – if possible – with reduced load. Differences between calculated and actual operating data can then be detected early on, and damage to your system can be avoided. If the shock absorbers were selected on calculated data that does not correspond to the maximum possible loading (i.e. selection based on drive power being switched off or at reduced impact speed) then these restricted impact conditions must not be exceeded during initial testing or subsequent use of the system. Otherwise you risk damaging the shock absorbers and/or your machine by overstressing materials. After the initial trial check that the piston rod fully extends again and that there are no signs of oil leakage. Also check that the mounting hardware is still securely tightened. You should be fully assured that no damage has occurred to the piston rod, the body, or the mounting hardware.

Fixed Mechanical Stop

Safety shock absorbers do not need an external stop as a stroke limiter. The stroke of the safety absorber is limited by the stop of the impact head on the shock absorber. For types SCS33 to SCS64, the fixed stop point is achieved with the integrated stop collar.

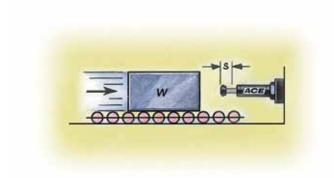
What Needs to be Checked after a Full Load Impact?

Safety shock absorbers that were originally checked only at reduced speed or load need to be checked again after a full load impact (i.e. emergency use) has occurred. Check that the piston rod fully extends to its full out position, that there are no signs of oil leakage and that the mounting hardware is still securely fixed. You should be fully assured that no damage has occurred to the piston rod, the body, or the mounting hardware. If no damage has occurred, the safety shock absorber can be put back into normal operation (see **initial start-up**).

Maintenance

Safety shock absorbers are sealed systems and do not need special maintenance. Safety shock absorbers that are not used regularly (i.e. that are intended for emergency stop systems) should be checked within the normal time frame for safety checks, but **at least once a year**. At this time special attention must be paid to checking that the piston rod resets to its fully extended position, that there is no oil leakage and that the mounting brackets are still secure and undamaged. The piston rod must not show any signs of damage. Safety shock absorbers that are **in use regularly** should be checked **every three months**.

Repair Notice


If any damage to the shock absorber is detected or if there are any doubts as to the proper functioning of the unit please send the unit for service to ACE. Alternatively contact your local ACE office for further advice.

Detailed information on the above listed points can be taken from the corresponding operating and assembly instructions.

Safety Shock Absorbers

Application Examples

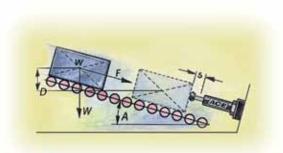
Controlled emergency stop

ACE safety shock absorbers protect precision assembly jigs

The basic mount of this coordinate measuring machine for the production of parts in the aircraft industry is made of granite and must not be damaged. To avoid damage from operating errors or mishandling, all movement axes were equipped with safety shock

If the turntables malfunction the safety shock absorbers decelerate the loads before expensive damage can occur to the granite meas-

for the aircraft industry.


uring tables.

absorbers of the type SCS45-50.

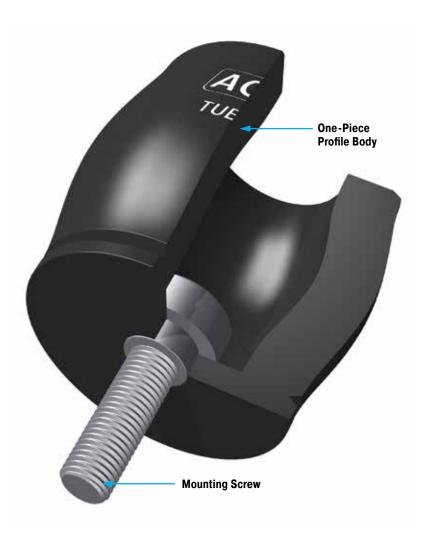
Optimally protected turntable

ACE safety shock absorbers defy the forces of nature.

In order to efficiently protect against falling rocks, a net is put through its paces under realistic conditions. Large sized **SCS80-500-F** type safety shock absorbers with additional crash sleeves safeguard the high durability of the test construction. These models provide the necessary reserves for energy absorption – especially with regard to the supporting forces which must be considered during the very high collision speed imposed on a stone transportation car.

Downhill security

Complete protection on a test facility


TUBUS-Series Type TA Bumper

Axial Damping

The bumper type TA from the innovative ACE TUBUS series is a maintenance-free, self-contained damping product made from a special Co-Polyester Elastomer. As a result of the degressive damping characteristic it provides a high energy absorption at the beginning of its stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °F to 120 °F. The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100 % of the incoming energy. The space-saving package size ranges from Ø 0.47" up to Ø 4.57" and is very simply and quickly installed with the supplied specially stepped mounting screw. The TA series have been specially developed to provide maximum energy capacity in the minimum mounting space in the capacity range from 17.7 in-lbs up to 26,119 in-lbs.

Life expectancy is extremely high; up to twenty times longer than urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE. For applications with preloading and increased temperatures please consult ACE.

Impact velocity range: Up to max. 16.4 ft/sec

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Mounting: In any position

Dynamic force range: 196 lbs to 20,233 lbs

Operating temperature range: -40 °F to 120 °F

Energy absorption: 58 % to 73 %

Material hardness rating: Shore 55D

Max. torque:

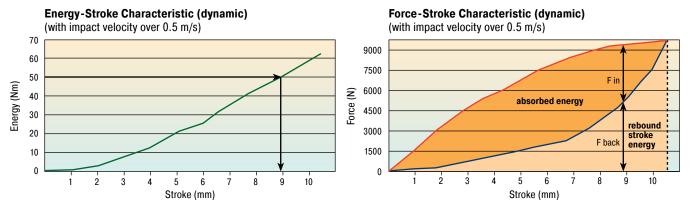
- M3: 0.74 ft-lbs
- M4: 1.25 ft-lbs
- M5: 1.70 ft-lbs (DIN912) 4.43 ft-lbs (Shouldered screw)
- M6: 7.38 ft-lbs
- M8: 14.75 ft-lbs
- M12: 36.88 ft-lbs
- M16: 88.51 ft-lbs

Note: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

d₁ D d₂

79


The calculation and selection of the required bumper should be carried out or be approved by ACE.

Characteristics of Type TA37-16

Ordering Example

Outer-Ø **1.46**" (37 mm) Stroke **0.63**" (16 mm) _

TUBUS Axial

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 8.8 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

TA37-16

Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are available on request.

Dimensions	and Capacity	/ Chart								
Туре	¹ E ₃ in-lbs/Cycle	² E ₃ in-lbs/Cycle	Max. Stroke inches	D inches	L ₁ inches	М	L ₂ inches	d ₁ inches	d ₂ inches	Weight Ibs
TA12-5	17.7	26.6	0.20	0.47	0.12	M3	0.43	0.59	0.43	0.002
TA17-7	53.1	79.7	0.28	0.67	0.16	M4	0.63	0.87	0.59	0.009
TA21-9	88.5	142	0.35	0.83	0.20	M5	0.71	1.02	0.71	0.015
TA22-10	102	186	0.39	0.87	0.24	M6	0.75	1.06	0.75	0.018
TA28-12	257	407	0.47	1.10	0.24	M6	1.02	1.42	0.98	0.035
TA34-14	425	770	0.55	1.34	0.24	M6	1.18	1.69	1.18	0.053
TA37-16	575	991	0.63	1.46	0.24	M6	1.30	1.89	1.30	0.068
TA40-16	726	1,151	0.63	1.57	0.31	M8	1.38	1.97	1.34	0.088
TA43-18	991	1,460	0.71	1.69	0.31	M8	1.50	2.17	1.50	0.112
TA47-20	1,239	1,531	0.79	1.85	0.47	M12	1.61	2.36	1.61	0.176
TA50-22	1,505	1,974	0.87	1.97	0.47	M12	1.77	2.52	1.73	0.187
TA54-22	1,779	2,956	0.87	2.13	0.47	M12	1.85	2.68	1.85	0.220
TA57-24	2,142	2,673	0.94	2.24	0.47	M12	2.01	2.87	1.97	0.256
TA62-25	2,691	3,195	0.98	2.44	0.47	M12	2.13	3.07	2.09	0.291
TA65-27	3,310	4,142	1.06	2.56	0.47	M12	2.28	3.23	2.24	0.337
TA70-29	3,726	4,638	1.14	2.76	0.47	M12	2.40	3.39	2.36	0.384
TA72-31	4,266	4,948	1.22	2.83	0.63	M16	2.56	3.58	2.48	0.567
TA80-32	5,045	7,355	1.26	3.15	0.63	M16	2.72	3.94	2.72	0.688
TA82-35	6,045	8,152	1.38	3.23	0.63	M16	2.91	4.13	2.83	0.774
TA85-36	7,054	9,231	1.42	3.35	0.63	M16	2.99	4.33	2.95	0.862
TA90-38	8,267	11,055	1.50	3.54	0.63	M16	3.15	4.49	3.07	0.913
TA98-40	10,152	13,763	1.57	3.86	0.63	M16	3.39	4.84	3.35	1.131
TA116-48	17,825	26,119	1.89	4.57	0.63	M16	3.98	5.75	3.86	1.770

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

TUBUS-Series Type TS Bumper

Axial Soft Damping

The bumper type TS from the innovative ACE TUBUS series is a maintenance-free, self-contained damping product made from a special Co-Polyester Elastomer. As a result of the almost linear damping characteristic it provides a very smooth energy absorption with minimum reaction loads on the machine. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °F to 120 °F. The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100 % of the incoming energy. The space saving package size ranges from Ø 0.55" up to Ø 4.21" and is very simply and quickly installed with the supplied specially stepped mounting screw. The TS series have been specially developed to provide maximum energy capacity in the minimum mounting **space** in the capacity range from 17.7 in-lbs up to 8,550 in-lbs.

Life expectancy is extremely high; up to twenty times longer than urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE. For applications with preloading and increased temperatures please consult ACE.

Impact velocity range: Up to max. 16.4 ft/sec

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Mounting: In any position

Dynamic force range: 120 lbs to 5,283 lbs

Operating temperature range: -40 °F to 120 °F

Energy absorption: 35 % to 64 %

Material hardness rating: Shore 40D

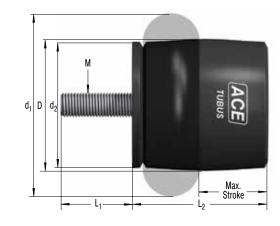
Max. torque:

- 1.25 ft-lbs M4:
- M5: 1.70 ft-lbs (DIN912) 4.43 ft-lbs (Shouldered screw)
- M6: 7.38 ft-lbs
- M12: 36.88 ft-lbs
- M16: 88.51 ft-lbs

Note: Mounting screw should additionally be secured with Loctite.

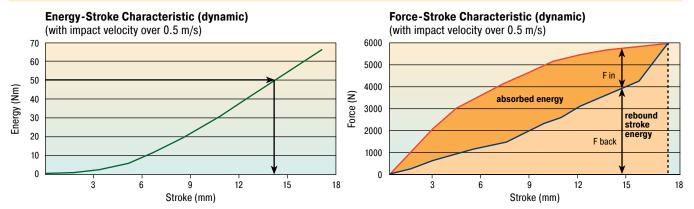
On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

ssue 7.2014 Specifications subject to change


TUBUS-Series Type TS Bumper

TS44-23

Axial Soft Damping



TUBUS Axial Soft	ł	ŧ
Outer-Ø 1.73" (44 mm)		
Stroke 0.91" (23 mm)		

The calculation and selection of the required bumper should be carried out or be approved by ACE.

Characteristics of Type TS44-23

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 14 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are available	on request.
--	-------------

Dimension	is and Capacity	/ Chart								
Туре	¹ E ₃ in-lbs/Cycle	² E ₃ in-lbs/Cycle	Max. Stroke inches	D inches	L ₁ inches	М	L ₂ inches	d ₁ inches	d ₂ inches	Weight Ibs
TS14-7	17.7	26.6	0.28	0.55	0.16	M4	0.59	0.75	0.51	0.007
TS18-9	35.4	53.1	0.35	0.71	0.20	M5	0.71	0.94	0.63	0.013
TS20-10	53.1	62.0	0.39	0.79	0.24	M6	0.83	1.06	0.75	0.018
TS26-15	102	133	0.59	1.02	0.24	M6	1.10	1.46	0.98	0.033
TS32-16	204	230	0.63	1.26	0.24	M6	1.26	1.73	1.18	0.046
TS35-19	266	319	0.75	1.38	0.24	M6	1.42	1.89	1.30	0.062
TS40-19	301	372	0.75	1.57	0.24	M6	1.50	2.01	1.34	0.068
TS41-21	425	558	0.83	1.61	0.47	M12	1.61	2.17	1.50	0.112
TS44-23	558	637	0.91	1.73	0.47	M12	1.77	2.36	1.57	0.159
TS48-25	717	805	0.98	1.89	0.47	M12	1.93	2.52	1.73	0.190
TS51-27	814	1,009	1.06	2.01	0.47	M12	2.05	2.72	1.85	0.225
TS54-29	1,080	1,398	1.14	2.13	0.47	M12	2.17	2.87	1.97	0.256
TS58-30	1,319	1,363	1.18	2.28	0.47	M12	2.32	3.07	2.09	0.291
TS61-32	1,443	1,496	1.26	2.40	0.63	M16	2.44	3.27	2.20	0.448
TS64-34	1,841	2,248	1.34	2.52	0.63	M16	2.60	3.43	2.36	0.514
TS68-36	2,009	2,407	1.42	2.68	0.63	M16	2.72	3.62	2.48	0.547
TS75-39	2,576	3,611	1.54	2.95	0.63	M16	2.95	3.98	2.72	0.664
TS78-40	3,115	4,062	1.57	3.07	0.63	M16	3.11	4.13	2.83	0.747
TS82-44	3,708	5,487	1.73	3.23	0.63	M16	3.31	4.33	2.95	0.763
TS84-43	4,204	5,620	1.69	3.31	0.63	M16	3.35	4.53	3.07	0.886
TS90-47	5,133	6,886	1.85	3.54	0.63	M16	3.62	4.88	3.31	1.080
TS107-56	7,983	8,550	2.20	4.21	0.63	M16	4.33	5.79	3.94	1.616

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

The bumper type TR from the innovative ACE TUBUS series is a maintenance-free, self-contained damping product made from a special Co-Polyester Elastomer. The radial deformation of the TR series provides a very long and soft deceleration with a progressive energy absorption towards the end of stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °F to 120 °F. The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100 % of the incoming energy. The space saving package size ranges from Ø 1.14" up to Ø 3.94" and is very simply and quickly installed with the supplied special stepped mounting screw. The TR series have been specially developed to provide maximum stroke in the minimum mounting space in the capacity range from 10.6 in-lbs up to 1,292 in-lbs.

Life expectancy is extremely high; up to twenty times longer than urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE. For applications with preloading and increased temperatures please consult ACE.

Impact velocity range: Up to max. 16.4 ft/sec

Environment: Resistant to oil, grease, seawater and to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Mounting: In any position

Dynamic force range: 49 lbs to 1,686 lbs

Operating temperature range: -40 °F to 120 °F

Energy absorption: 25 % to 45 %

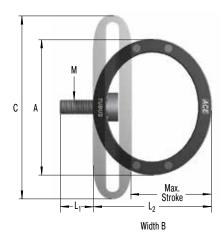
Material hardness rating: Shore 40D

Max. torque:

- M5: 4.43 ft-lbs
- M6: 7.38 ft-lbs M8: 14.75 ft-lbs

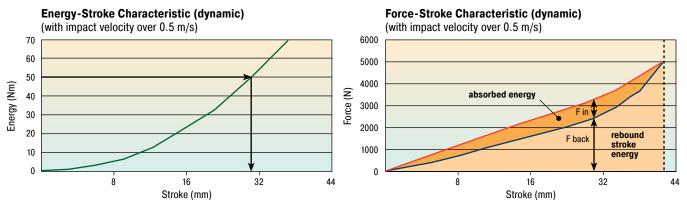
Note: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.


TUBUS-Series Type TR Bumper

TR93-57

Radial Damping



TUBUS Radial	ł	≜	1
Outer-Ø 3.66" (93 mm)			
Stroke 2.24" (57 mm)			

The calculation and selection of the required bumper should be carried out or be approved by ACE.

Characteristics of Type TR93-57

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 31 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are ava	ailable on request.
--	---------------------

Dimensions and Capacity Chart										
Туре	¹ E ₃ in-lbs/Cycle	² E ₃ in-lbs/Cycle	Max. Stroke inches	A inches	L ₁ inches	М	L ₂ inches	B inches	C inches	Weight Ibs
TR29-17	10.6	15.9	0.67	1.14	0.20	M5	0.98	0.51	1.50	0.013
TR37-22	20.4	47.8	0.87	1.46	0.20	M5	1.26	0.75	1.97	0.029
TR43-25	31.0	71.7	0.98	1.69	0.20	M5	1.46	0.79	2.28	0.037
TR50-35	51.3	73.4	1.38	1.97	0.20	M5	1.73	1.34	2.68	0.057
TR63-43	106	150	1.69	2.48	0.20	M5	2.17	1.69	3.43	0.112
TR67-40	204	292	1.57	2.64	0.20	M5	2.32	1.81	3.46	0.170
TR76-46	305	381	1.81	2.99	0.24	M6	2.64	1.81	4.02	0.229
TR83-50	398	655	1.97	3.27	0.24	M6	2.87	2.01	4.29	0.313
TR85-50	602	814	1.97	3.35	0.31	M8	2.87	2.68	4.37	0.454
TR93-57	814	1,080	2.24	3.66	0.31	M8	3.27	3.27	4.88	0.655
TR100-60	1,018	1,292	2.36	3.94	0.31	M8	3.46	3.23	5.24	0.739

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

TUBUS-Series Type TR-H Bumper

Radial Damping (Hard Version)

Like the standard model TR, the **bumper type TR-H** is used for radial damping and therefore provides a very long and soft deceleration. The bumpers from the innovative ACE TUBUS series are maintenance-free, self-contained damping products made from a special Co-Polyester Elastomer. With nearly the same dimensions the TUBUS TR-H type provides a much higher energy absorption due to a harder mixture of materials. The TR-H type completes the TUBUS series between the progressive model type TR and the almost linear type TS. This offers an individual and widely graduated range of damping characteristics within the whole TUBUS series. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °F to 120 °F. The low installed weight, the economic price and the long operating life of up to 1 million cycles make this an attractive alternative to hydraulic end position damping, if the moving mass does not have to stop in an exact datum position and it is not necessary to absorb 100 % of the incoming energy. The **space** saving package size ranges from Ø 1.18" up to Ø 4.02" and is very simply and quickly installed with the supplied special stepped mounting screw. The TR-H series have been specially developed to provide maximum stroke in the minimum mounting space in the capacity range from 23.9 in-lbs up to 3,779 in-lbs.

Life expectancy is extremely high; up to twenty times longer than urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE. For applications with preloading and increased temperatures please consult ACE.

Impact velocity range: Up to max. 16.4 ft/sec

Environment: Resistant to oil, grease, seawater an to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Mounting: In any position

Dynamic force range: 124 lbs to 4,766 lbs

Operating temperature range: -40 °F to 120 °F

Energy absorption: 39 % to 62 %

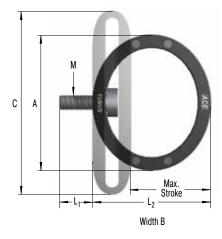
Material hardness rating: Shore 55D

Max. torque:

- M5: 4.43 ft-lbs M6: 7.38 ft-lbs
- M8: 14.75 ft-lbs

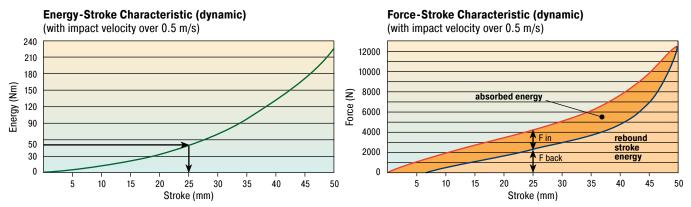
Note: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.


TUBUS-Series Type TR-H Bumper

Radial Damping (Hard Version)

TR95-50H


Ordering Example

TUBUS Radial	A	ŧ	ŧ	ł
Outer-Ø 3.74" (95 mm)				
Stroke 1.97" (50 mm)				
Hard Version				

The calculation and selection of the required bumper should be carried out or be approved by ACE.

Characteristics of Type TR95-50H

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 25 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are availabl	e on request.
---	---------------

Dimension	s and Capacity	Gliart								
Туре	¹ E ₃ in-lbs/Cycle	² E ₃ in-lbs/Cycle	Max. Stroke inches	A inches	L ₁ inches	М	L ₂ inches	B inches	C inches	Weight Ibs
TR30-15H	23.9	50.5	0.59	1.18	0.20	M5	0.91	0.51	1.50	0.009
TR39-19H	53.1	159	0.75	1.54	0.20	M5	1.18	0.75	1.97	0.024
TR45-23H	77.0	212	0.91	1.77	0.20	M5	1.42	0.79	2.28	0.035
TR52-32H	104	177	1.26	2.05	0.20	M5	1.65	1.34	2.68	0.055
TR64-41H	221	407	1.61	2.52	0.20	M5	2.09	1.69	3.43	0.112
TR68-37H	589	867	1.46	2.68	0.20	M5	2.20	1.81	3.46	0.176
TR79-42H	721	938	1.65	3.11	0.24	M6	2.52	1.81	4.02	0.231
TR86-45H	1,097	1,823	1.77	3.39	0.24	M6	2.72	2.01	4.29	0.322
TR87-46H	1,398	2,310	1.81	3.39	0.31	M8	2.68	2.64	4.37	0.419
TR95-50H	2,018	3,027	1.97	3.74	0.31	M8	3.03	3.23	4.88	0.586
TR102-56H	2,567	3,779	2.20	4.02	0.31	M8	3.31	3.19	5.24	0.703

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

TUBUS-Series Type TR-L Bumper

Radial Damping (Long Version)

The radial tube bumper type TR-L from the innovative ACE TUBUS series is a maintenance-free, self-contained damping product made from a special Co-Polyester Elastomer. The radial deformation of the TR series provides a very long and soft deceleration with a progressive energy absorption towards the end of stroke. The excellent temperature characteristic of the material provides consistent damping performance over a temperature of -40 °F to 120 °F. The tube bumper has been specially developed for applications that require very low reaction forces. The actual force generated depends upon the length of the tube bumper chosen. The TUBUS TR-L type is suitable for a wide range of applications that require protection from shock or impact anywhere along a straight line. Typical applications include mining equipment, dockyard handling equipment and on baggage handling and conveyor systems. The TR-L series have been developed to provide maximum stroke in the minimum mounting space in the capacity range from 63.7 in-lbs up to 95,411 in-lbs.

Life expectancy is extremely high; up to twenty times longer than urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE. For applications with preloading and increased temperatures please consult ACE.

Impact velocity range: Up to max. 16.4 ft/sec

Environment: Resistant to oil, grease, seawater an to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the E_3 rating by +40 %.

Mounting: In any position

Dynamic force range: 295 lbs to 48,941 lbs

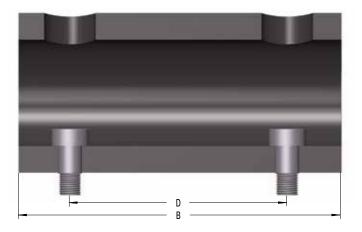
Operating temperature range: -40 °F to 120 °F

Energy absorption: 26 % to 41 % Material hardness rating: Shore 40D

Max. torque:

- M5: 4.43 ft-lbs
- M8: 14.75 ft-lbs
- M16: 29.50 ft-lbs (DIN912)
- 88.51 ft-lbs (Shouldered screw)

Note: Mounting screw should additionally be secured with Loctite.


On request: Special strokes, -colours, -sizes and -materials.



TUBUS-Series Type TR-L Bumper

Radial Damping (Long Version)

Ordering Example	TR66-40L-2
TUBUS Radial	+ + + +
Outer-Ø 2.60" (66 mm)	
Stroke 1.57" (40 mm)	
Long Version	
Length 2 = 12.01" (305 mm)	

The calculation and selection of the required bumper should be carried out or be approved by ACE.

Dimensions and Capacity Char

in-lbs/Cycle in-lbs/Cycle inches inches	L ₁ L ₂ nches inch 0.20 0.94 0.20 1.44 0.20 2.17 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.36 0.31 2.66	Ibs 8 0.097 6 0.159 7 0.234 2 0.060 2 1.279 2 1.830 2 2.491 2 2.932 8 0.838
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.20 1.40 0.20 2.11 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.34 0.31 2.66	6 0.159 7 0.234 2 0.060 2 1.279 2 1.830 2 2.491 2 2.932 8 0.838
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.20 2.11 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.36 0.31 2.66 0.31 2.66	7 0.234 2 0.060 2 1.279 2 1.830 2 2.491 2 2.932 8 0.838
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.31 2.32 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.66 0.31 2.66	2 0.060 2 1.279 2 1.830 2 2.491 2 2.932 8 0.838
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.31 2.32 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.33 0.31 2.36 0.31 2.66 0.31 2.66	2 1.279 2 1.830 2 2.491 2 2.932 8 0.838
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.31 2.32 0.31 2.33 0.31 2.33 0.31 2.68 0.31 2.68 0.31 2.68	2 1.830 2 2.491 2 2.932 8 0.838
TR66-40L-4 3,611 5,054 1.57 2.60 24.02 3.43 22.01 M8 0 TR66-40L-5 4,514 6,319 1.57 2.60 30.00 3.43 27.99 M8 0 TR76-45L-1 1,283 1,797 1.77 2.99 5.98 3.94 4.02 M8 0 TR76-45L-2 2,567 3,593 1.77 2.99 12.01 3.94 10.00 M8 0 TR76-45L-3 3,850 5,390 1.77 2.99 17.99 3.94 15.98 M8 0 TR76-45L-5 5,133 7,187 1.77 2.99 24.02 3.94 22.01 M8 0 TR76-45L-5 6,417 8,984 1.77 2.99 20.00 3.94 27.99 M8 0 TR83-48L-1 1,593 2,230 1.89 3.27 5.98 4.17 4.02 M8 0 TR83-48L-2 3,186 4,461 1	0.31 2.32 0.31 2.32 0.31 2.68 0.31 2.68	2 2.491 2 2.932 8 0.838
TR66-40L-5 4,514 6,319 1.57 2.60 30.00 3.43 27.99 M8 0 TR76-45L-1 1,283 1,797 1.77 2.99 5.98 3.94 4.02 M8 0 TR76-45L-2 2,567 3,593 1.77 2.99 12.01 3.94 10.00 M8 0 TR76-45L-3 3,850 5,390 1.77 2.99 17.99 3.94 15.98 M8 0 TR76-45L-3 3,850 5,390 1.77 2.99 17.99 3.94 15.98 M8 0 TR76-45L-4 5,133 7,187 1.77 2.99 24.02 3.94 22.01 M8 0 TR76-45L-5 6,417 8,984 1.77 2.99 30.00 3.94 27.99 M8 0 TR83-48L-1 1,593 2,230 1.89 3.27 5.98 4.17 4.02 M8 0 TR83-48L-2 3,186 4,461 1	0.312.320.312.680.312.68	2 2.932 8 0.838
TR76-45L-1 1,283 1,797 1.77 2.99 5.98 3.94 4.02 M8 0 TR76-45L-2 2,567 3,593 1.77 2.99 12.01 3.94 10.00 M8 0 TR76-45L-3 3,850 5,390 1.77 2.99 17.99 3.94 15.98 M8 0 TR76-45L-3 3,850 5,390 1.77 2.99 17.99 3.94 15.98 M8 0 TR76-45L-4 5,133 7,187 1.77 2.99 24.02 3.94 22.01 M8 0 TR76-45L-5 6,417 8,984 1.77 2.99 30.00 3.94 27.99 M8 0 TR83-48L-1 1,593 2,230 1.89 3.27 5.98 4.17 4.02 M8 0 TR83-48L-2 3,186 4,461 1.89 3.27 12.01 4.17 10.00 M8 0	0.31 2.68 0.31 2.68	8 0.838
TR76-45L-2 2,567 3,593 1.77 2.99 12.01 3.94 10.00 M8 0 TR76-45L-3 3,850 5,390 1.77 2.99 17.99 3.94 15.98 M8 0 TR76-45L-4 5,133 7,187 1.77 2.99 24.02 3.94 22.01 M8 0 TR76-45L-5 6,417 8,984 1.77 2.99 30.00 3.94 27.99 M8 0 TR83-48L-1 1,593 2,230 1.89 3.27 5.98 4.17 4.02 M8 0 TR83-48L-2 3,186 4,461 1.89 3.27 12.01 4.17 10.00 M8 0	0.31 2.68	
TR76-45L-33,8505,3901.772.9917.993.9415.98M80TR76-45L-45,1337,1871.772.9924.023.9422.01M80TR76-45L-56,4178,9841.772.9930.003.9427.99M80TR83-48L-11,5932,2301.893.275.984.174.02M80TR83-48L-23,1864,4611.893.2712.014.1710.00M80		
TR76-45L-4 5,133 7,187 1.77 2.99 24.02 3.94 22.01 M8 0 TR76-45L-5 6,417 8,984 1.77 2.99 30.00 3.94 27.99 M8 0 TR83-48L-1 1,593 2,230 1.89 3.27 5.98 4.17 4.02 M8 0 TR83-48L-2 3,186 4,461 1.89 3.27 12.01 4.17 10.00 M8 0	0.31 2.69	
TR76-45L-5 6,417 8,984 1.77 2.99 30.00 3.94 27.99 M8 0 TR83-48L-1 1,593 2,230 1.89 3.27 5.98 4.17 4.02 M8 0 TR83-48L-2 3,186 4,461 1.89 3.27 12.01 4.17 10.00 M8 0	2.00	8 2.491
TR83-48L-1 1,593 2,230 1.89 3.27 5.98 4.17 4.02 M8 0 TR83-48L-2 3,186 4,461 1.89 3.27 12.01 4.17 10.00 M8 0	0.31 2.68	8 3.153
TR83-48L-2 3,186 4,461 1.89 3.27 12.01 4.17 10.00 M8 0	0.31 2.68	8 3.924
	0.31 2.87	
	0.31 2.87	7 2.050
TR83-48L-3 4,779 6,691 1.89 3.27 17.99 4.17 15.98 M8 0	0.31 2.87	7 3.042
	0.31 2.87	7 3.990
TR83-48L-5 7,966 11,152 1.89 3.27 30.00 4.17 27.99 M8 0	0.31 2.87	7 4.982
	0.63 3.46	
TR99-60L-2 4,779 6,691 2.36 3.90 12.01 5.12 10.00 M16 (0.63 3.46	
TR99-60L-3 7,169 10,037 2.36 3.90 17.99 5.12 15.98 M16 (0.63 3.46	6 4.277
TR99-60L-4 9,559 13,382 2.36 3.90 24.02 5.12 22.01 M16 0	0.63 3.46	6 5.600
TR99-60L-5 11,949 16,728 2.36 3.90 30.00 5.12 27.99 M16 0	0.63 3.46	6 6.834
TR99-60L-6 14,338 20,073 2.36 3.90 35.98 5.12 34.02 M16 (0.63 3.46	6 8.157
TR99-60L-7 16,728 23,419 2.36 3.90 42.01 5.12 40.00 M16 (0.63 3.46	6 9.480
TR143-86L-1 5,310 7,435 3.39 5.63 5.98 7.52 2.99 M16 0	0.63 5.00	0 3.175
TR143-86L-2 10,621 14,869 3.39 5.63 12.01 7.52 7.99 M16 (0.63 5.00	0 6.393
TR143-86L-3 15,931 22,304 3.39 5.63 17.99 7.52 13.98 M16 (0.63 5.00	0 8.554
	0.63 5.00	
TR143-86L-5 26,552 37,173 3.39 5.63 30.00 7.52 25.98 M16 (0.63 5.00	0 14.528
TR143-86L-6 31,863 44,608 3.39 5.63 35.98 7.52 31.97 M16 (0.63 5.00	0 17.394
TR143-86L-7 37,173 52,042 3.39 5.63 42.01 7.52 37.99 M16 (0.63 5.00	
	0.63 6.50	
	0.63 6.50	
TR188-108L-3 29,207 40,890 4.25 7.40 17.99 9.65 13.98 M16 (0.63 6.50	0 15.190
TR188-108L-4 38,943 54,521 4.25 7.40 24.02 9.65 20.00 M16 (0.63 6.50	0 20.260
TR188-108L-5 48,679 68,151 4.25 7.40 30.00 9.65 25.98 M16 (0.63 6.50	0 25.111
TR188-108L-6 58,415 81,781 4.25 7.40 35.98 9.65 31.97 M16 (0.63 6.50	0 30.071
TR188-108L-7 68,151 95,411 4.25 7.40 42.01 9.65 37.99 M16 (0.63 6.50	0 35.142

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

TUBUS-Series Type TR-HD Bumper

The bumpers type TR-HD from the innovative ACE TUBUS series are maintenance free, ready to install damping products manufactured from a co-polyester elastomer. The TUBUS bumpers are loaded radially just like the basic model TR. Compared to the basic model, however, their solid structural design offers a high level of power and energy absorption within a minimum damping distance. The two different material strengths allow different damping characteristics to be targeted. The slightly biconcave structure also ensures softer force run. The TUBUS TR-HD is suitable for all forms of use, which demand a high level of protection against impact or collision. The high level of power and energy absorption offers a wide range of application, amongst other in agricultural technology and for construction machines e.g. shovels or articulated joints of construction site vehicles. The relevant support power also depends on the material strength of the chosen shock absorber. The TR-HD series was specially developed to absorb a maximum of energy with minimum construction height. A stroke of 0.47" to 1.73" easily covers energy absorption within a range of between 2,036 in-lbs and 46,095 in-lbs. The bumper is simply and quickly mounted horizontally as well as vertically with the two supplied screws. The drill distance for fastening can be individually adjusted upon request.

Life expectancy is extremely high; up to twenty times longer than urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE. For applications with preloading and increased temperatures please consult ACE.

Impact velocity range: Up to max. 16.4 ft/sec

Environment: Resistant to oil, grease, seawater an to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the E_3 rating by +40 %.

Mounting: In any position

Dynamic force range: 17,715 lbs to 182,748 lbs

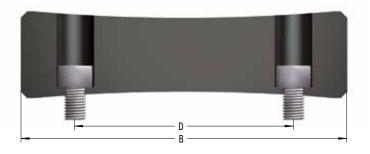
Operating temperature range: -40 °F to 120 °F

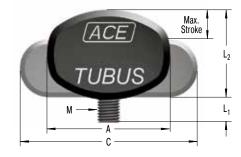
Energy absorption: 43 % to 76 % Material hardness rating: Shore 40D, Shore 55D

Max. torque: M10: 5.16 ft-lbs M12: 8.85 ft-lbs

Note: Mounting screw should additionally be secured with Loctite.

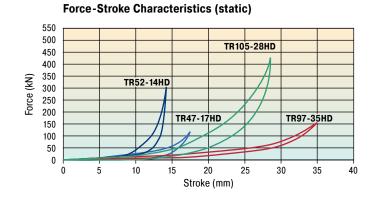
On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.


ssue 7.2014 Specifications subject to change



TUBUS-Series Type TR-HD Bumper

Radial Damping (Heavy Duty Version)



Ordering Example	TR63-24HD
TUBUS Radial	+ + +
Outer-Ø 2.48 " (63 mm)	
Stroke 0.94" (24 mm)	
Heavy Duty Version	

The calculation and selection of the required bumper should be carried out or be approved by ACE.

Comparison of Damping Characterstics of Type TR-HD

Dimensions and Capacity Chart

Туре	¹ E ₃ in-lbs/Cycle	² E ₃ in-lbs/Cycle	F max. static Ibs	Max. Stroke inches	A inches	B inches	C inches	D inches	М	L ₁ inches	L ₂ inches	Weight Ibs
TR42-14HD	3,585	5,018	14,365	0.58	1.64	5.84	2.31	4.02	M10	0.79	1.33	0.375
TR47-12HD	7,585	10,621	33,632	0.48	1.83	5.92	2.28	4.02	M10	0.75	1.23	0.375
TR47-17HD	7,523	10,532	27,449	0.67	1.84	5.90	2.75	4.02	M10	0.94	1.27	0.397
TR52-14HD	14,462	20,250	68,455	0.47	2.14	6.10	2.73	4.02	M10	0.87	1.07	0.397
TR57-21HD	10,568	14,798	23,560	0.86	2.23	5.86	3.12	4.02	M10	0.71	1.87	0.750
TR62-15HD	26,021	36,430	55,078	0.62	2.44	6.02	3.04	4.02	M10	0.63	1.59	0.728
TR62-19HD	26,021	36,430	87,653	0.66	2.94	6.25	3.71	4.02	M10	0.63	1.50	0.794
TR63-24HD	18,241	25,534	43,703	0.97	2.46	6.02	3.61	4.02	M10	0.79	1.79	0.728
TR72-26HD	15,046	21,065	28,056	1.04	2.84	5.88	3.86	4.02	M12	0.91	2.33	1.235
TR79-20HD	24,729	34,624	65,038	0.82	3.12	6.04	3.86	4.02	M12	0.94	2.11	1.257
TR79-31HD	26,331	36,863	50,942	1.17	3.10	6.09	4.42	4.02	M12	0.91	2.21	1.235
TR85-33HD	22,357	31,296	32,845	1.26	3.20	5.89	4.36	4.02	M12	0.91	2.75	1.565
TR89-21HD	39,280	54,990	107,324	0.85	3.50	6.37	4.42	4.02	M12	0.87	1.88	1.235
TR90-37HD	33,456	46,838	54,112	1.48	3.56	6.11	5.04	4.02	M12	0.91	2.71	1.653
TR93-24HD	30,278	42,386	68,005	0.96	3.66	6.10	4.54	4.02	M12	0.91	2.50	1.742
TR97-31HD	68,487	95,880	129,311	1.00	4.11	6.45	5.07	4.02	M12	0.83	2.23	1.764
TR97-35HD	24,968	34,952	34,351	1.50	3.85	5.93	5.16	4.02	M12	0.79	3.30	2.337
TR102-44HD	41,572	58,202	57,214	1.74	4.10	6.15	5.80	4.02	M12	0.87	3.18	2.315
TR105-28HD	49,927	69,894	96,129	1.02	4.12	6.14	4.97	4.02	M12	0.83	2.74	2.205
TR117-30HD	74,851	104,793	143,676	1.09	4.59	6.57	5.61	4.02	M12	0.98	2.48	2.227

 $^{1}\ \mathrm{Max.}$ energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

The bumper type TC from the innovative ACE TUBUS series is a maintenance-free, self-contained damping product made from a special Co-Polyester Elastomer. They have been specially developed for crane equipment applications and fulfill the international industry standards OSHA and CMAA. Many crane applications require a spring rate with a high return force. This is achieved with the unique Dual-Profile Concept of the TC-S models. For energy-management-systems the TC model types provide a cost efficient solution with a high return force capability. The very small and light package size from Ø 2.52" up to Ø 6.93" covers an energy absorption capacity ranging from 3,983 in-lbs up to 157,632 in-lbs/ cycle. The excellent resistance to UV, seawater, chemical and microbe attack together with the wide operating temperature range from -40 °F to 120 °F enables a wide range of applications.

Life expectancy is extremely high; up to twenty times longer than urethane dampers, up to ten times longer than rubber bumpers and up to five times longer than steel springs.

Calculation and selection to be approved by ACE. For applications with preloading and increased temperatures please consult ACE.

Impact velocity range: Up to max. 16.4 ft/sec

Environment: Resistant to oil, grease, seawater an to microbe or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Capacity rating: For emergency use only (1 cycle) it is possible to exceed the E_3 rating by +40 %.

Mounting: In any position

Dynamic force range: 17,985 lbs to 219,864 lbs

Operating temperature range: -40 °F to 120 °F

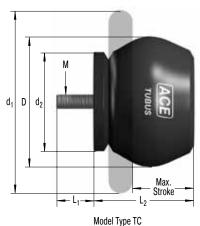
Energy absorption: 31 % to 64 % Material hardness rating:

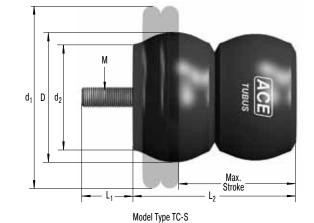
Shore 55D

Max. torque:

- M12: 36.88 ft-lbs
- M16: 29.50 ft-lbs (DIN912) 88.51 ft-lbs (Shouldered screw)

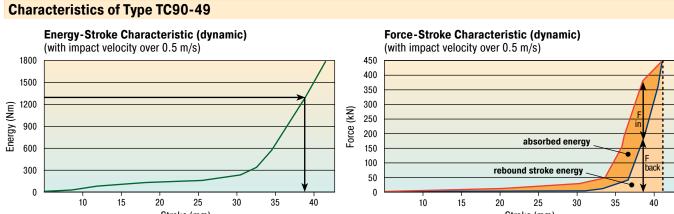
Note: Mounting screw should additionally be secured with Loctite.


On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.



TUBUS-Series Type TC Bumper

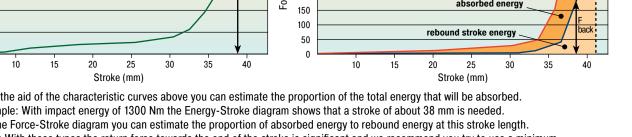
For Crane Equipment



Ordering Example	TC83-73-S
TUBUS Crane Buffer	

The calculation and selection of the required bumper should be carried out or be approved by ACE.

91


With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 1300 Nm the Energy-Stroke diagram shows that a stroke of about 38 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Note: With these types the return force towards the end of the stroke is significant and we recommend you try to use a minimum of 90 % of the total stroke available.

Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are available on request.

Dimensions a	nd Capacity Ch	art								
Туре	¹ E ₃ in-lbs/Cycle	² E ₃ in-lbs/Cycle	Max. Stroke inches	D inches	L ₁ inches	М	L ₂ inches	d ₁ inches	d ₂ inches	Weight Ibs
TC64-62-S	3,983	5,576	2.44	2.52	0.47	M12	3.11	3.50	2.05	0.386
TC74-76-S	8,674	12,143	2.99	2.91	0.47	M12	3.78	4.49	2.40	0.575
TC83-73-S	17,170	24,030	2.87	3.27	0.47	M12	3.70	5.00	2.72	0.723
TC86-39	10,709	15,002	1.54	3.39	0.47	M12	2.20	5.24	3.07	0.626
TC90-49	14,515	20,312	1.93	3.54	0.47	M12	2.68	4.88	2.64	0.584
TC100-59	15,799	22,127	2.32	3.94	0.47	M12	3.31	5.87	3.58	1.131
TC102-63	17,436	24,428	2.48	4.02	0.63	M16	3.86	5.51	3.23	1.396
TC108-30	16,816	23,543	1.18	4.25	0.47	M12	2.09	5.24	3.03	0.864
TC117-97	32,836	45,980	3.82	4.61	0.63	M16	5.08	7.40	3.94	2.321
TC134-146-S	64,699	90,543	5.75	5.28	0.63	M16	7.40	8.46	4.61	3.468
TC136-65	37,616	52,662	2.56	5.35	0.63	M16	4.17	7.01	4.17	2.586
TC137-90	56,202	78,683	3.54	5.39	0.63	M16	4.53	8.50	4.45	2.630
TC146-67-S	73,727	103,200	2.64	5.75	0.63	M16	4.65	7.52	3.90	3.468
TC150-178-S	78,418	109,749	7.01	5.91	0.63	M16	9.49	8.82	5.20	5.690
TC153-178-S	64,256	89,968	7.01	6.02	0.63	M16	8.90	9.49	5.16	5.496
TC168-124	89,392	125,149	4.88	6.61	0.63	M16	6.54	10.24	5.79	5.584
TC176-198-S	112,626	157,632	7.80	6.93	0.63	M16	9.92	10.98	5.91	8.124

¹ Max. energy capacity per cycle for continous use.

² Energy capacity per cycle for emergency use.

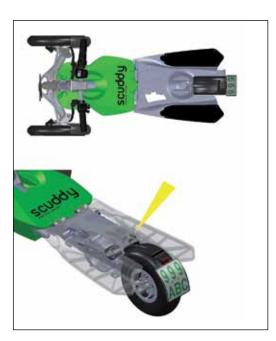
92

TUBUS-Series Bumpers

For Special Solutions

"TUBUS bumpers – ideal for use in agricultural machinery!"

TUBUS bumpers give tele-wheel loaders strong stability.


With their function of limiting swinging movement, they secure machines when cornering and loading and provide a high degree of comfort and safety as well as securing the loaders. A further advantage is that the shovel can be loaded up to its full capacity for better performance when levelling and pushing.

Small cost, large force absorption: The **TUBUS bumper TC design series** employed here convinces with its energy absorption in the range of 3,983 in-lbs up to 112,626 in-lbs, whereby the machine elements with diameters of between 2.52" and 6.93" are very easily integrated into construction designs.

High level of stability and more driving comfort for tele-wheel loaders

TUBUS bumpers make driving an e-scooter a real experience.

Compact, maintenance free, comfortable and also suitable for a load capacity of 220.5 lbs: the tandem construction with **TR52-32H** type TUBUS bumpers, which absorb up to 104 in-lbs/Cycle.

The footboard of an electric scooter should be dampened to enable the driver to experience a comfortable ride even over potholes and other bumpy surfaces. Ideally, the characteristic line should be furnished with a soft increase in force over a long stroke. The elegant look of the scooter as well as the folding mechanism

designed to save space have not allowed the use of feasible damper solutions up to now. Inferior alternatives such as rubber dampers made of polyurethane or simple steel springs could not be considered from the start. The TUBUS bumper **TR52-32H** offered the perfect solution with its compact construction design paired with progressive damping action.

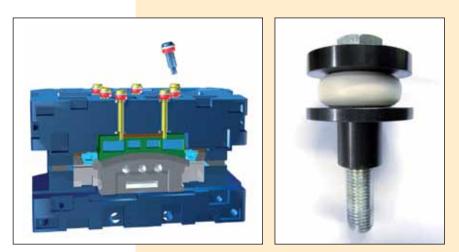
TUBUS bumpers increase the riding comfort of an electric scooter

TUBUS-Series Bumpers

For Special Solutions

ACE presents its new damper family especially for pressing tools

Innovative damping solutions were developed to meet the requirements of ever increasing demands on damping. The stresses on machines and tool components, especially in the new press generation (servo presses) are increasing because of high pressing speeds.

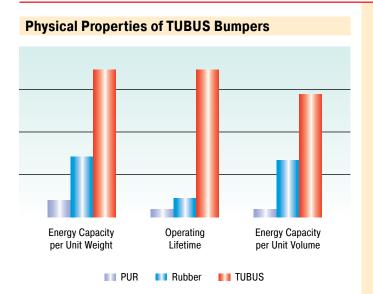

ACE's new damping products increase tool service life and efficiency.

93

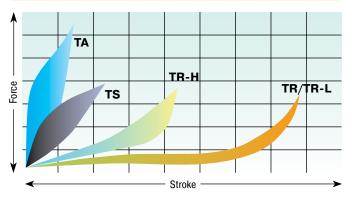
- · Long service life and operational safety
- High absorption of force and energy
- Reduction of noise
- Higher cycle times ensure efficient work
- High-level energy absorption
- · High-level resistance to abrasion and shearing

The innovative, co-polyester elastomer **TUBUS down holder damper** has found a **new application as a damper for pressing tools** and replaces overloaded PU springs. Sheet metal forming takes place increasingly in the automobile and household goods industry because of faster presses. Retaining screws and therefore the actual tool are sustainably protected when the press is opened after the pressing process. The TUBUS-Special is available for different screws from M10 to M30. The maximum energy absorption is between 44.3 in-Ibs and 2,381in-Ibs.

Down holder dampers for different retaining screw diameters were developed especially for pressing tools



Detailed information about down holder dampers, lift dampers, damping plugs and press dampers can be found on our web site www.ace-ace.com


TUBUS-Series Bumpers

Overview

94

Comparison of Damping Characteristics

Characteristics of dynamic energy absorption for impact velocity over 1.64 ft/sec. For impact velocities under 1.64 ft/sec, please request a static characteristic curve.

The material does not absorb water or swell and it is highly resistant to abrasion. Products of the TUBUS-series will work at **temperatures of** -40 °F up to 120 °F and are resistant to grease, oil, petroleum fluids, microbe and chemical attack and sea water. They also have good UV and ozone resistance. The very long service life of up to one million cycles, the compact size and the low unit weight differentiate the TUBUS bumpers from all other types of elastomer damping products.

If you are looking for an economic damping solution where the load does not need to be decelerated to an exact datum position and you do not need 100% absorption of the impact energy then TUBUS bumpers are a real alternative to hydraulic end position damping. They are the preferred solution for end stop dampers in robotic systems, high bay warehouse systems and all similar automated plant and machinery.

For the crane industry we manufacture special **high capacity crane buffers** that have an ideal deceleration characteristic with high return force for this type of application and energy capacities from 3,983 in-lbs to 157,632 in-lbs. This means you can have a TUBUS crane buffer capable of providing up to 202,329 lbs of braking force in a package only weighing 2.20 lbs and absorbing up to 50% of the energy. ACE TUBUS bumpers are high performance damping products made from a special Co-Polyester Elastomer. They have a high energy absorbing capacity compared with other materials.

The TUBUS-series comprises 7 main types with over 140 individual models.

The excellent damping characteristics are achieved as a result of the special elastomer material and the worldwide patented construction design. This enables us to change the characteristics of the elastomer material so that individual and distinct damping curves are possible.

TUBUS bumpers offer a considerable performance advantage when compared to other materials such as rubber, urethanes (PUR) and steel springs.

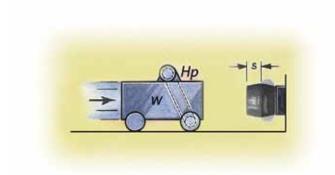
A further advantage compared to other damping products is the operating life expectancy – up to twenty times longer than urethane dampers, up to ten times longer than rubber dampers and up to five times longer than steel spring dampers.

The innovative TUBUS bumpers absorb energy while exhibiting the following damping characteristics:

Model type TA: Degressive characteristic with max. energy absorption (coloured area) with min. stroke. Energy absorption: 58 % to 73 %.

Model type TS: Almost linear characteristic with low reaction force over a short operating stroke. Energy absorption: 35 % to 64 %.

TR/TR-H/TR-L: Progressive characteristic with graduallyincreasing reaction force over a long stroke.Energy absorption **TR**:25 % to 45 %Energy absorption **TR-H**:39 % to 62 %Energy absorption **TR-L**:26 % to 41 %


Special Bumpers

Besides the standard product range of the TUBUS-series there are also a large number of special products available upon request for customerspecific applications.

TUBUS-Series Bumpers

Application Examples

Safe end position damping

ACE TUBUS bumpers protect the integrated loading station on a new high speed machining centre.

The ACE TUBUS bumper is designed to prevent overrun on the high speed loading station of a Camshaft machining centre used in the automobile industry. In the event that the drive train fails during operation or incorrect data is inputted the ACE TUBUS bumper absorbs the impact preventing costly damage to the machine. The **TA98-40** TUBUS bumper impressed engineers with this exceptionally long service life in operation.

When used as an emergency stop the TUBUS bumper can absorb up to 73 % of the impact energy.

Safety with ultra high speed operation

TUBUS bumpers safeguard hydraulic cylinders.

In a testing facility for vehicle tanks, the test specimens are pulled out of the water with a support arm. A hydraulic cylinder carries out the swinging movement and is attenuated in the end position by two TUBUS **TR85-50**.

Even if this work could be taken over by other absorber solutions, the energy balance clearly speaks for the benefits of the TUBUS bumpers – they are inexpensive, they save space, they are free of leaks due to solid construction and are suitable for underwater functions in the test pool.

Economical end position absorption on the hydraulic drive

Issue 7.2014 Specifications subject to change

Smooth pivoting

Precision Hydraulic Feed Controls

Adjustable

VC precision feed controls are sealed hydraulic units fitted with a high precision metering element. When the piston rod is depressed the hydraulic oil is forced through the adjustable precision metering orifice. This provides a constant and precise feed control throughout the stroke length. The feed rate can be adjusted over a wide range by turning the external adjuster knob at the rear end of the unit. The threaded outer body makes installation and the adjustment of feed control travel limits very simple. MA and MVC are similar feed control units intended for applications where the higher precision of the VC series is not required. Precision feed controls are selfcontained, maintenance-free, temperature stable and stick-slip free. The rolling diaphragm seal of feed controls with a stroke up to 2.16" (55 mm) provides a leakproof sealed unit and also provides an integral accumulator for the oil displaced during operation. The high precision, adjustable metering system can provide accurate feed rates from as low as 0.47 inches/min with light propelling forces. Applications include saws, cutters, drill feeds, grinding and boring machines in the plastics, metal, wood and glass industries.

> "For precise adjustment of the feed rate!"

Piston Rod

Positive Stop

Main Bearing

Rolling Diaphragm Seal

Feed Rate Adjustment

Impact velocity range: Avoid high impact velocities. At speeds of 0.98 ft/sec the maximum allowed energy is approx. 8.85 in-lbs for units up to 2.16" stroke and approx. 17.70 in-lbs for units 2.95" to 4.92" stroke. Where higher energies occur use a shock absorber for the initial impact.

Piston

Outer Body

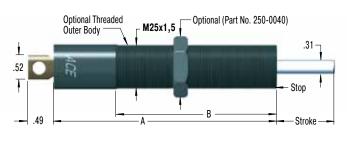
Return Spring

Pressure Chamber

Fine Filter

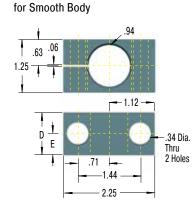
Material: Body: Black anodized aluminum. Piston rod: Hard chrome plated.

Nylon button 250-0755 can be fitted onto piston rod. Unit may be mounted in any position.


When mounting: Take care not to damage the adjuster knob.

Operating temperature range: 32 °F to 140 °F

Only VC2515 to VC2555: Do not rotate piston rod, if excessive rotation force is applied rolling seal may rupture. In contact with petroleum base oils or cutting fluids specify optional neoprene rolling seal or install air bleed adaptor type SP. ssue 7.2014 Specifications subject to change


Precision Hydraulic Feed Controls VC2515 to VC25125Adjustable

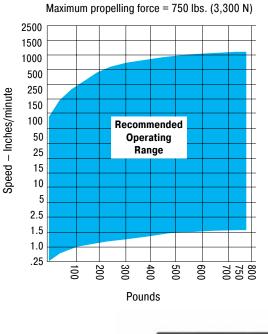
Accessories, mounting, installation ... see pages 34 to 37.

Clamp Mount

See chart below for D & E dimensions

Ca	nacity	Chart
Ud	pacity	Gliart

Capacity Chart										
Type Part Number	Stroke inches	A inches	B inches	Min. Propelling Force	Max. Propelling Force	Min. Return Force	Max. Return Force	Rod Reset Time	Max. Side Load Angle	Weight Ibs
				lbs	lbs	lbs	lbs	sec	٥	
VC2515FT	0.59	5.04	3.15	6.74	787	3.37	6.74	0.2	3	0.88
VC2530FT	1.18	6.34	4.33	6.74	787	1.12	6.74	0.4	2	1.10
VC2555FT	2.16	8.23	5.19	7.87	787	1.12	8.99	1.2	2	1.32
VC2575FT	2.95	11.14	5.90	11.24	787	2.25	11.24	1.7	2	1.76
VC25100FT	3.94	12.13	5.90	13.49	787	2.25	11.24	2.3	1	1.98
VC25125FT	4.92	13.13	5.90	15.74	787	2.25	13.49	2.8	1	2.20


Suffix "FT" signifies a M25x1.5 threaded body.

Suffix "F" signifies a plain body 0.94" dia. (without thread) also available, with optional clamp type mounting block.

Technical Data

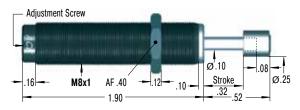
Outer body: Plain body 0.94" dia. (without thread) is also available. **Feed rate range:** Min. 0.51 in/min with 90 lbs. propelling force. Max. 1,500 in/min with 787 lbs. propelling force.

Operating Range VC

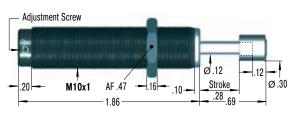
Mounting Examples

Mounting with clamp mount

Installed with air bleed collar SP25


Dimensional Chart for Smooth Body Clamp Туре D Е Part Number inches inches VC2515F 1.25 0.63 250-0465 VC2530F 1.25 0.63 250-0465 VC2555F 1.25 0.63 250-0465 VC2575F 2.00 1.00 250-0466 VC25100F 2.00 1.00 250-0466 VC25125F 2.00 250-0466 1.00

Feed Controls MA/MVC


Adjustable

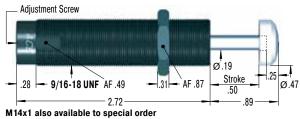
MA30M


Accessories, mounting, installation ... see pages 32 to 37.

MA50M

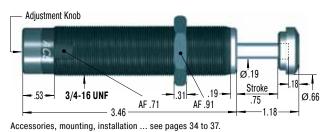
Accessories, mounting, installation ... see pages 32 to 37.

MA35

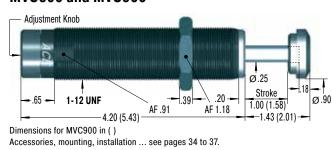


<u>98</u>

98

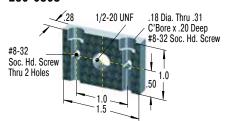


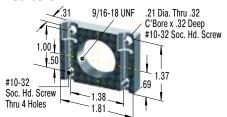
MA150



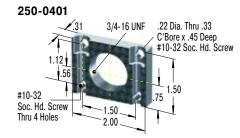
Accessories, mounting, installation ... see pages 33 to 37.

MVC225

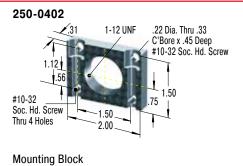



Mounting Block

250-0308



Mounting Block


250-0318

Mounting Block

Mounting Block

Feed Controls MA/MVC

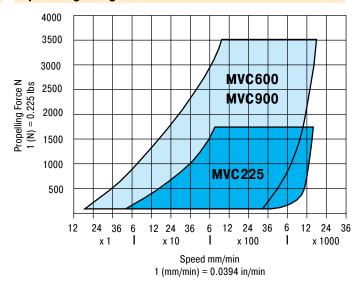
Adjustable

Capacity Chart

oupdoity onal	•							
		Propelling Force (lbs)						
Type Part Number	Stroke inches	min. Ibs	max. Ibs	Min. Return Force Ibs	Max. Return Force Ibs	Rod Reset Time sec	¹ Max. Side Load Angle °	Weight Ibs
MA30M	0.32	2	18	1.16	1.57	0.30	2	0.02
MA50M	0.28	9	36	0.47	1.8	0.30	2	0.05
MA35	0.40	3.3	45	1.20	2.60	0.20	2	0.10
MA150	0.50	4.5	67.4	0.70	1.20	0.40	2	0.12
MVC225	0.75	5	400	1.05	2.15	0.65	2	0.28
MVC600	1.00	14	800	2.40	6.87	0.85	2	0.67
MVC900	1.58	15	800	2.40	7.40	0.95	2	0.87

¹ For applications with higher side load angles consider using the side load adaptor page 36.

Technical Data

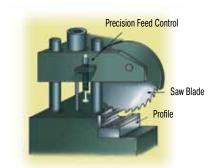

Impact velocity range: Avoid high impact velocities. At speeds of 0.98 ft/sec the maximum allowed energy is approx. 17.70 in-lbs. Where higher energies occur use a shock absorber for the initial impact.

Mounting: In any position

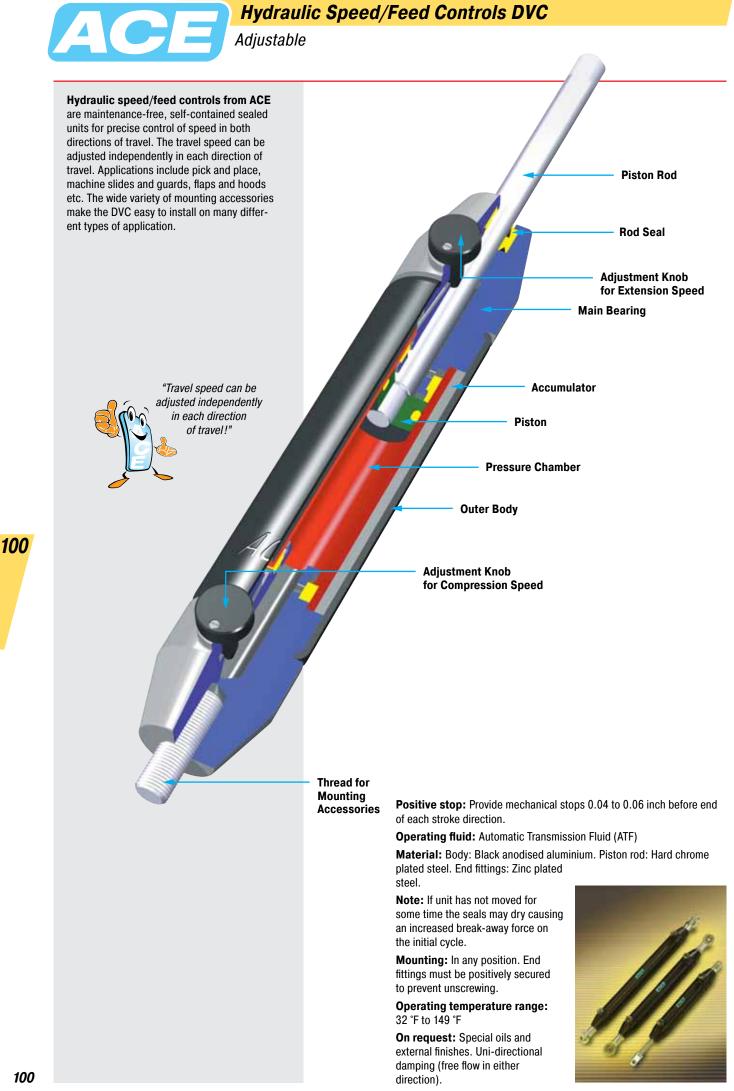
Positive stop: Integral mechanical stop built into the front of units. **Material:** Body: Steel with black oxide finish. Piston rod: Stainless steel.

Operating temperature range: 32 °F to 150 °F

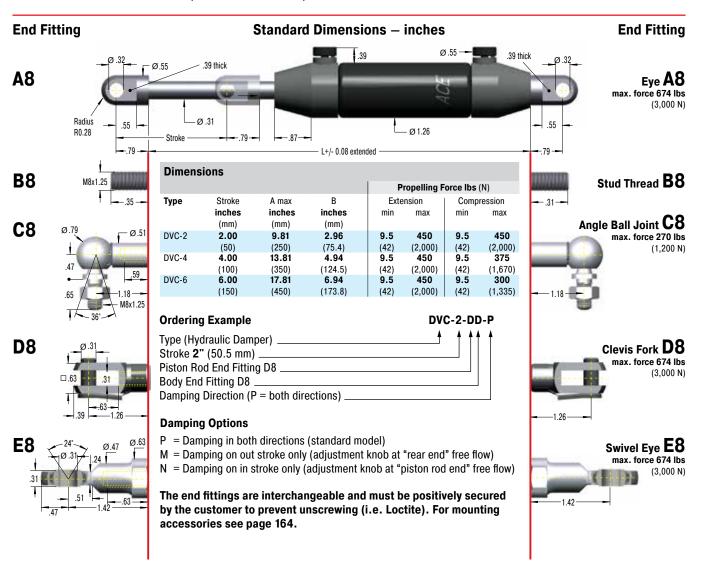
Operating Range MVC225 to 900


Application Examples

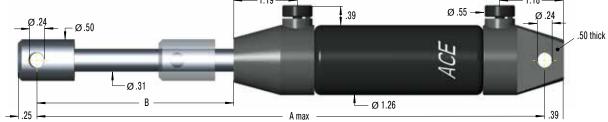
A high force is necessary at the start of drilling when the drill first contacts the sheet. After the initial cut this high force causes the drill to break through. This results in jagged edges rather than a smooth clean hole and also causes tool breakage.


By installing an **ACE VC feed control** it is possible to precisely control the rate of drill advance. As a result the drilled holes are clean and consistent and drill breakage is considerably reduced.

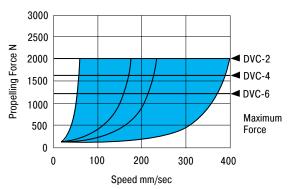
Drilling sheet metal

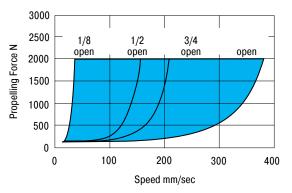

Varying material types, hardness and wear on the saw blade causes the cutting pressure to vary greatly. However the saw advance speed should remain constant as changes cause breakage of the material being cut or of the saw blade.

An **ACE VC feed control** fitted directly to the cutting head provides a simple and low cost solution. The cutting speed remains constant and can be easily preset. <u>99</u>



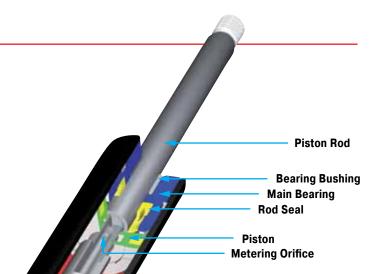
Hydraulic Speed/Feed Controls DVC


Adjustable (Compression and Extension Forces 9.44 lbs to 449.62 lbs (42 N to 2,000 N)


Fixed End Fitting DVC-2 to DVC-6

Compression Speed Control Chart

Tension Speed Control Chart



Hydraulic Dampers HBD-15 to HBD-40

Without Free Travel

ACE Controls HBD Hydraulic Dampers are maintenance-free, self-contained and sealed units. They are available with body diameters from 0.59" (15 mm) to 1.57" (40 mm) and with stroke lengths of up to 31.5" (800 mm). Unlike standard Hydraulic Dampers that include free travel up to 20 % of stroke, these dependable units have no free travel and are ideal for applications that require this level of performance. Double-acting Hydraulic Dampers are standard. However, a single acting design is available. Adjustment is easily achieved by pulling and turning the rod until the desired damping speed is achieved. The travel speed is adjustable and remains constant throughout the stroke. The single acting version is controllable in one direction only, with free-flow in the opposite direction. A built-in antilock guard allows adjustment to be made at any damping rate without unit lock up. These reliable units offer long life-cycle performance and are available for QUICK DELIVERY. A variety of end fittings are available for ease of operation and installation, and are included. Typical applications include: process control, machine guards, lids, hatches, fire safety doors, arms for medical equipment, conveyors, swinging loads, machine tools, lift gates, drill feed control, amusement park rides, and more.

Pressure Chamber

Intermediate Bearing and Fixed Separator

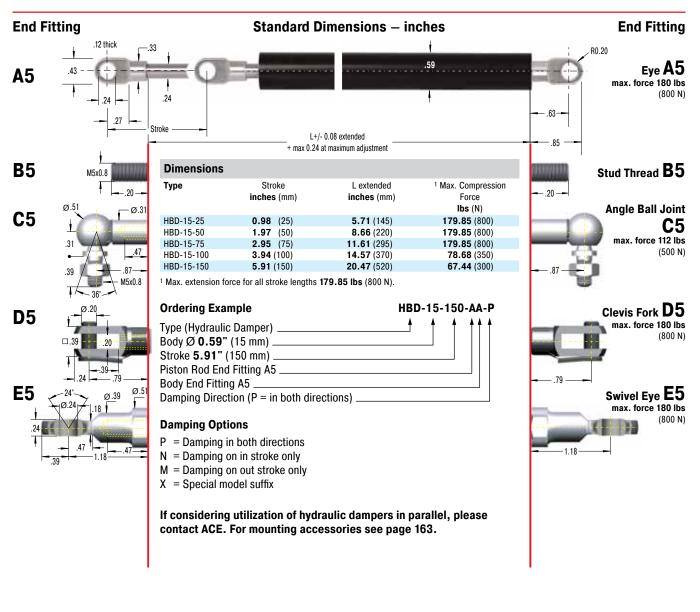
> "Single & double acting, end fittings included, long life-cycle performance, maintenance free, easily adjusted!"

ssue 7.2014 Specifications subject to change

Thread for Mounting Accessories

Operating fluid: Petroleum Oil **Mounting:** In any position. **Positive stop:** Provide a mechanical stop of 0.04" to 0.06" before the end of stroke in each direction.

Operating temperature range: -4 °F to +175 °F



102

Hydraulic Dampers HBD-15

Adjustable [Compression and Extension Forces 8 lbs to 180 lbs (35 N to 800 N)] – Without Free Travel

Technical Data

On request: Stainless steel, units with other damping characteristics, other stroke lengths and alternative end fittings.

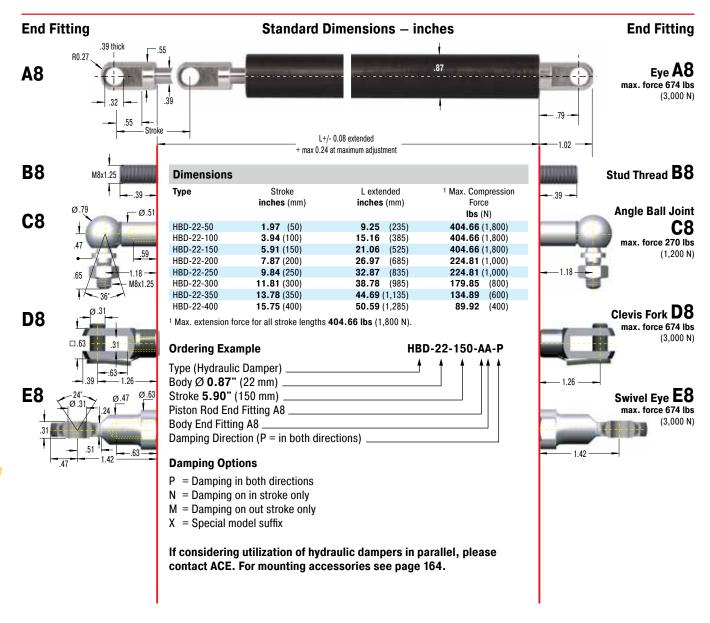
103

Mounting: In any position.

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.

Material: Body: Black anodized aluminum. Piston rod: Chrome steel. End fittings: Zinc plated steel.


Mounting brackets: A & E end fittings adapt to mounting bracket GSB-01. C end fitting, minus threaded stud adapts to GSB-02.

Adjust

104

Hydraulic Dampers HBD-22

Adjustable [Compression and Extension Forces 12 lbs to 405 lbs (55 N to 1,800 N)] – Without Free Travel

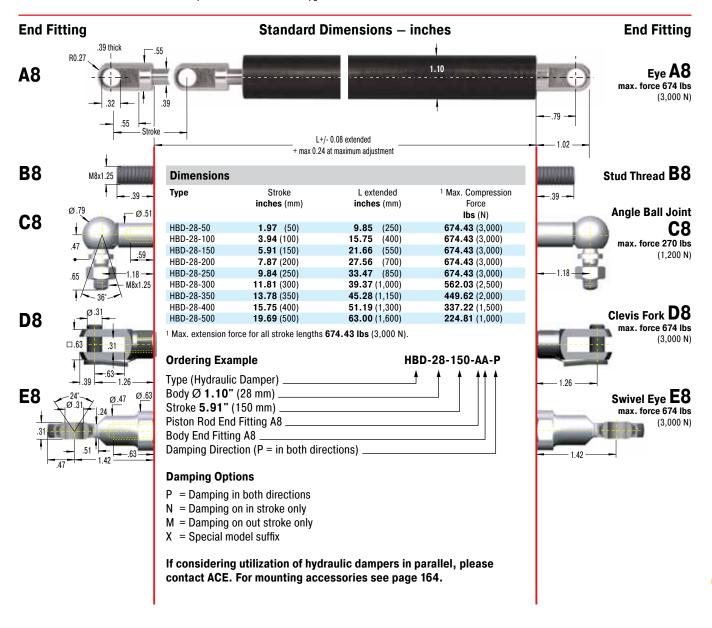
ssue 7.2014 Specifications subject to change

Technical Data

On request: Stainless steel, units with other damping characteristics, other stroke lengths, alternative end fittings and protective rod shrouds. **Mounting:** In any position.

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.


Material: Body: Black anodized aluminum. Piston rod: Heat treated black steel. End fittings: Zinc plated steel.

Mounting brackets: A end fitting adapts to mounting brackets GSB-03, GSB-04 and GSB-05. C end fitting, minus threaded stud adapts to GSB-06.

ACE

Hydraulic Dampers HBD-28

Adjustable [Compression and Extension Forces 16 lbs to 674 lbs (70 N to 3,000 N)] – Without Free Travel

Technical Data

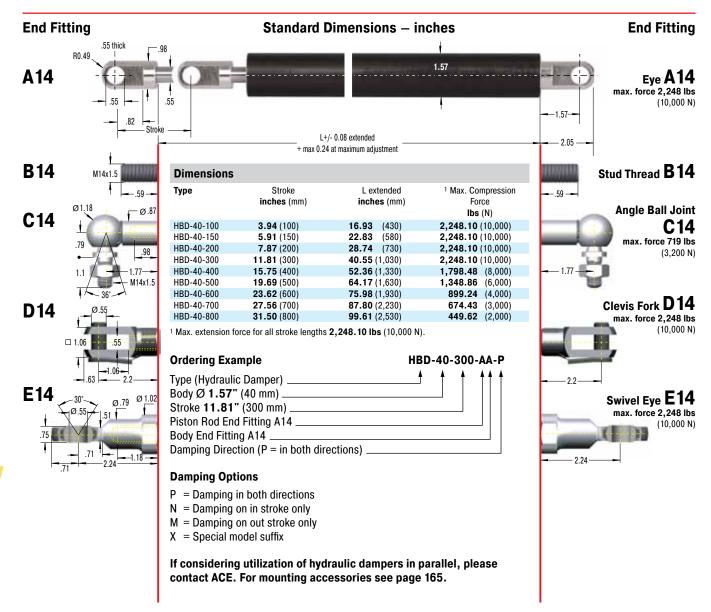
On request: Stainless steel, units with other damping characteristics, other stroke lengths, alternative end fittings and protective rod shrouds. **Mounting:** In any position.

105

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.

Material: Body: Black anodized aluminum. Piston rod: Chrome steel. End fittings: Zinc plated steel.


Mounting brackets: A end fitting adapts to mounting brackets GSB-03, GSB-04 and GSB-05. C end fitting, minus threaded stud adapts to GSB-06.

106

Hydraulic Dampers HBD-40

Adjustable [Compression and Extension Forces 18 lbs to 2,248 lbs (80 N to 10,000 N)] – Without Free Travel

Technical Data

On request: Stainless steel, units with other damping characteristics, other stroke lengths, alternative end fittings and protective rod shrouds. **Mounting:** In any position.

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.

Material: Body: Black anodized aluminum. Piston rod: Chrome steel. End fittings: Zinc plated steel.

Mounting brackets: A and E end fittings adapt to mounting bracket ME14.

Hydraulic Dampers HB-12 to HB-70 Adjustable

Hydraulic dampers from ACE are maintenance-free, self-contained and sealed units. They are available with body diameters from 0.47" (12 mm) to 2.76" (70 mm) and with stroke lengths of up to 31.50" (800 mm). As standard they are supplied as double acting dampers but a single acting version is also available. The single acting version is controllable in one direction only, with free flow in the opposite direction. The travel speed is adjustable and remains constant throughout the stroke. The new adjustment segment on the piston makes sensitive speed adjustment easy. ACE's hydraulic dampers sport the sleek design of our gas springs. The anodized aluminum body and the piston rod with a special wear-resistant coating provide an exceptionally long lifetime and excellent corrosion protection. A wide range of screw on mounting accessories make them very versatile and easy to install. Typical applications include machine guards and lids, fire safety flaps and doors, damping oscillations of suspended loads (Power and Free Systems) etc.

> Thread for Mounting Accessories

107

Piston Rod

Main Bearing

Rod Seal

Function: The stepless adjustment of the damping rate is achieved by

Metering Orifice

Piston

Pressure Chamber

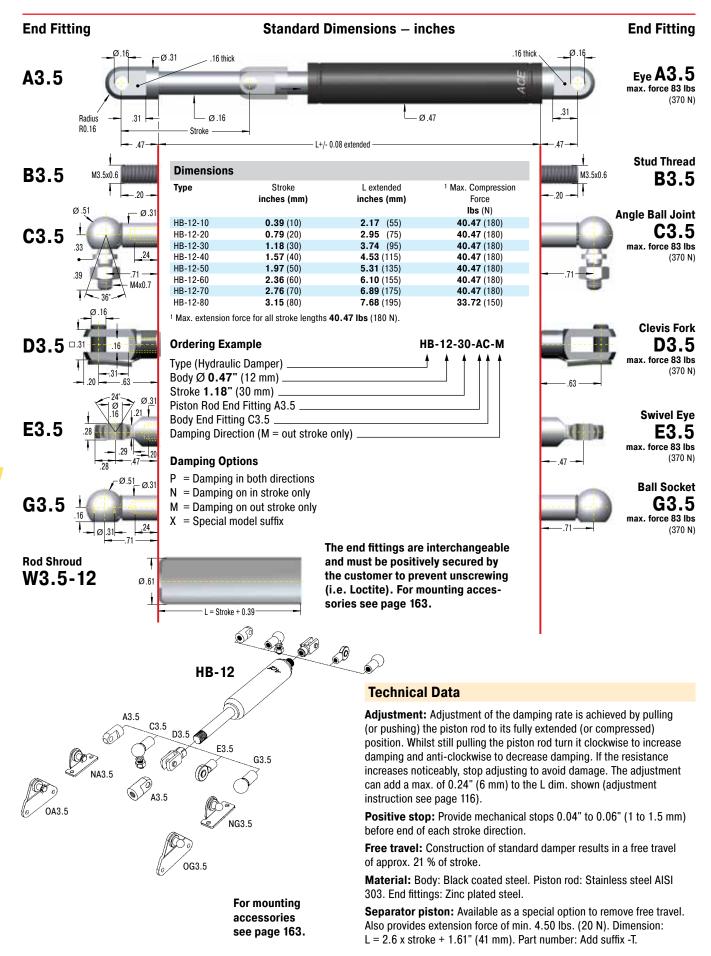
Outer Body

pulling (or pushing) the piston rod to its fully extended (or compressed) position and then turning the piston rod.

Operating fluid:

HB-12 and HB-70: Hydraulic oil. HB-15 to HB-40: Petroleum oil.

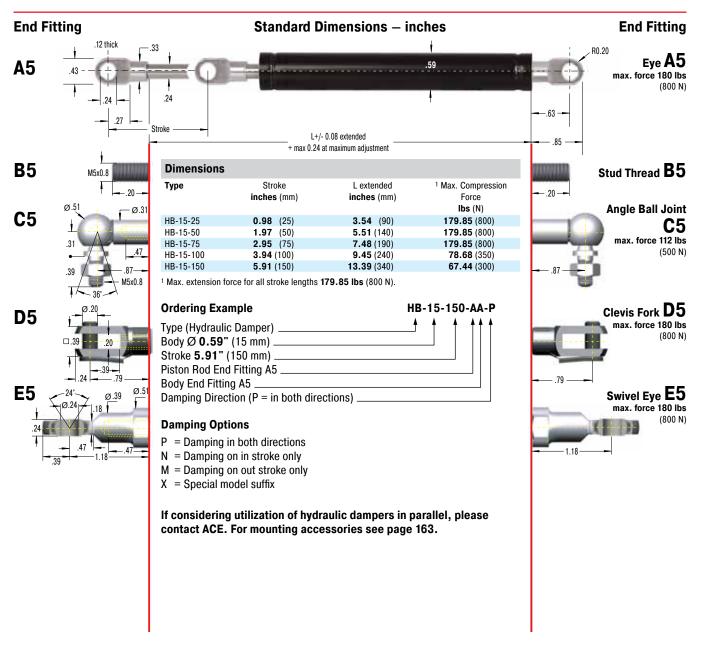
Mounting: In any position. End fittings must be positively secured to prevent unscrewing.


Operating temperature range: -4 °F to 175 °F

On request: Special lengths, alternative seals and end fittings.

Hydraulic Dampers HB-12

Adjustable [Compression and Extension Forces 4 lbs to 40 lbs (20 N to 180 N)]


108

ssue 7.2014 Specifications subject to change

Hydraulic Dampers HB-15

Adjustable [Compression and Extension Forces 4 lbs to 180 lbs (20 N to 800 N)]

Technical Data

On request: Stainless steel, units with other damping characteristics, other stroke lengths and alternative end fittings.

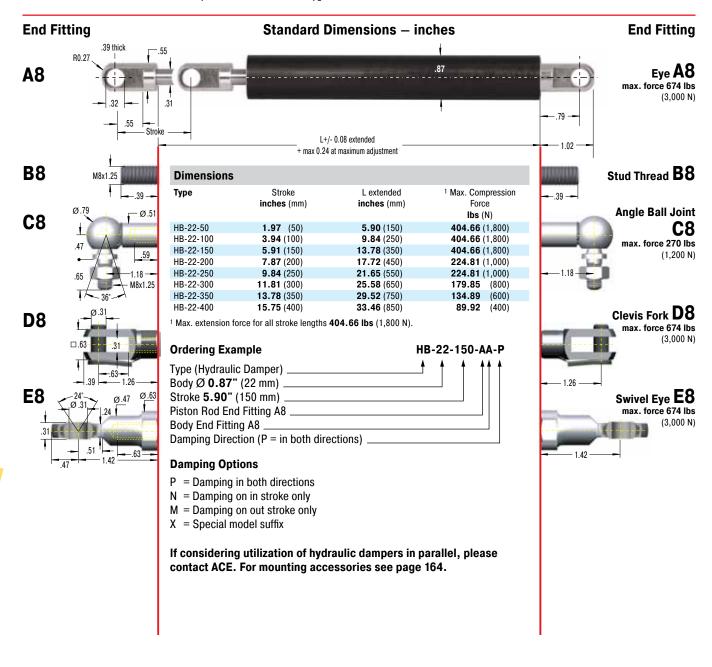
109

Mounting: In any position.

Adjustment: Adjustment of the damping rate is achieved by pulling (or pushing) the piston rod to its fully extended (or compressed) position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.

Free travel: Dampers have free travel accounting for up to 20 % of stroke.


Material: Body: Black anodized aluminum. Piston rod: Steel, wearresistant. End fittings: Zinc plated steel.

Mounting brackets: A & E end fittings adapt to mounting bracket GSB-01. C end fitting, minus threaded stud adapts to GSB-02.

ACE

Hydraulic Dampers HB-22

Adjustable [Compression and Extension Forces 7 lbs to 405 lbs (30 N to 1,800 N)]

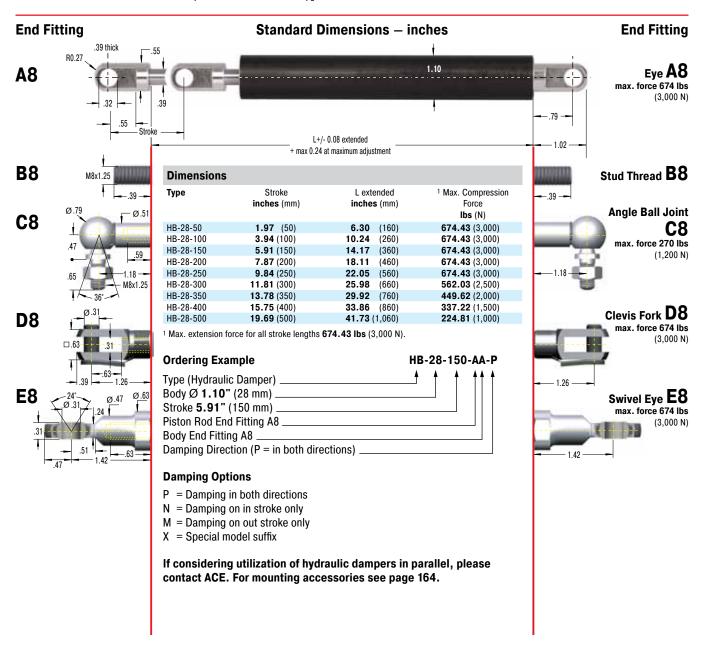
Technical Data

On request: Stainless steel, units with other damping characteristics, other stroke lengths, alternative end fittings and protective rod shrouds.

Mounting: In any position.

Adjustment: Adjustment of the damping rate is achieved by pulling (or pushing) the piston rod to its fully extended (or compressed) position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.


Free travel: Dampers have free travel accounting for up to 15 % of stroke.

Material: Body: Black anodized aluminum. Piston rod: Steel, wearresistant. End fittings: Zinc plated steel.

Mounting brackets: A end fitting adapts to mounting brackets GSB-03, GSB-04 and GSB-05. C end fitting, minus threaded stud adapts to GSB-06.

Hydraulic Dampers HB-28

Adjustable [Compression and Extension Forces 7 lbs to 674 lbs (30 N to 3.000 N)]

Technical Data

On request: Stainless steel, units with other damping characteristics, other stroke lengths, alternative end fittings and protective rod shrouds. 111

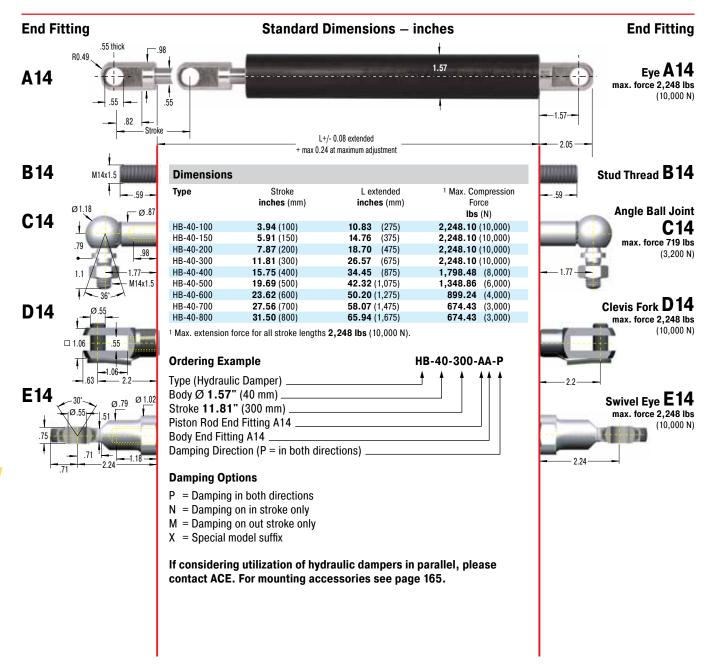
Mounting: In any position.

Adjustment: Adjustment of the damping rate is achieved by pulling (or pushing) the piston rod to its fully extended (or compressed) position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.

Free travel: Dampers have free travel accounting for up to 15 % of stroke.

Material: Body: Black anodized aluminum. Piston rod: Steel, wearresistant. End fittings: Zinc plated steel.


Mounting brackets: A end fitting adapts to mounting brackets GSB-03, GSB-04 and GSB-05. C end fitting, minus threaded stud adapts to GSB-06.

ssue 7.2014 Specifications subject to change

ACE

Hydraulic Dampers HB-40

Adjustable [Compression and Extension Forces 7 lbs to 2,248 lbs (30 N to 10,000 N)]

Technical Data

On request: Stainless steel, units with other damping characteristics, other stroke lengths, alternative end fittings and protective rod shrouds.

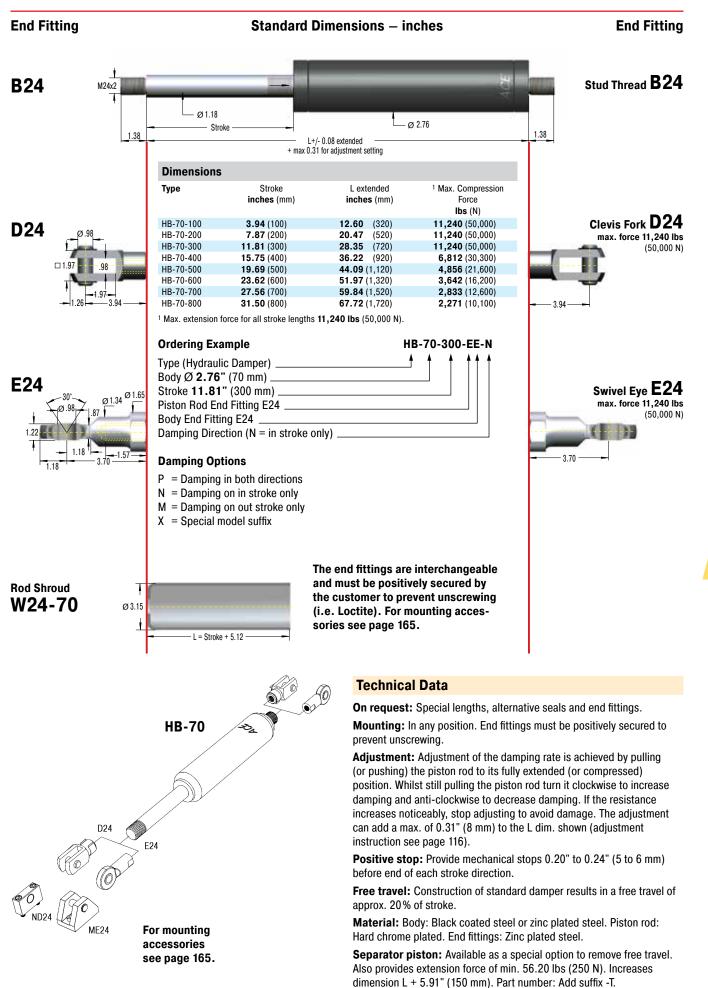
Mounting: In any position.

Adjustment: Adjustment of the damping rate is achieved by pulling (or pushing) the piston rod to its fully extended (or compressed) position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: Provide mechanical stops 0.04" to 0.06" (1 to 1.5 mm) before end of each stroke direction.

Free travel: Dampers have free travel accounting for up to 15 % of stroke.

Material: Body: Black anodized aluminum. Piston rod: Chrome steel. End fittings: Zinc plated steel.


Mounting brackets: A and E end fittings adapt to mounting bracket ME14.

Issue 7.2014 Specifications subject to change

Hydraulic Dampers HB-70

Adjustable [Compression and Extension Forces 450 lbs to 11,240 lbs (2,000 N to 50,000 N)]

ACE Controls Tow Bar Snubbers are ideal for power and free material handling equipment, such as automotive production systems. Product damage caused by high-speed acceleration and deceleration is virtually eliminated by controlling reaction forces through the tow bar. The ACE Controls snubber absorbs energy so that none of the harmful effects from abrupt starts and stops are transferred to the product. With the addition of our new modular design hydraulic units, many more opportunities are realized for greater masses to be controlled. These units start with a compact cartridge which utilizes oil that can operate from freezer to oven environments. The unique cartridge design offers a simple and effective solution to providing a smooth precise stroke travel. End fittings and overall snubber length are designed to customer specifications for greater freedom of use in nontraditional applications. These units come standard in either 4" or 6" strokes, and can be offered with optional items such as steel sleeves to protect the rod from paint, weld slag, and other contamination.

HSN Hydraulic Series

Steel Shroud

High Temperature Urethane Seals

Piston Head with long wear Piston Rings and Wear Rings

Hard Chrome Coated Steel Piston Rod

Filled with Hydraulic Fluid

Steel Outer Tube

Rigid Mounting (No damping device)

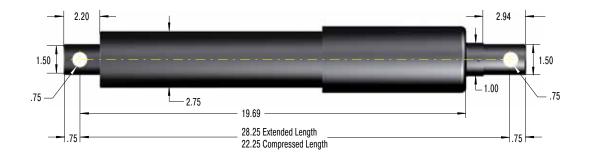
Stroke

ACE Pneumatic

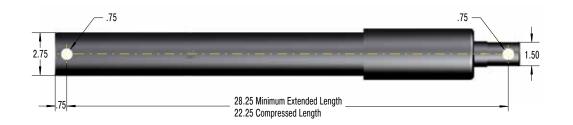
ACE Hydraulic Tow Bar Snubber

Tow Bar

Rear Outer Tube can be cut to establish custom lengths


Hardened Clevis

Force


SN Pneumatic Series

SN Series

HSN Series

Technical Data – SN Series

Tensile loading: 40,000 lbs (18,143 kg) Weight loading: 6,000 lbs (2,721 kg) Temperature: 400 °F (204 °C) Conveyor speed: 80 ft./min. (24.4 m/min.) Material: Outer tube: Steel. Piston rod: Chrome plated steel.

Technical Data – HSN Series

Tensile loading: 40,000 lbs (18,143 kg) Weight loading: 25,000 lbs (11,340 kg) Temperature: -20 °F to +350 °F (-29 °C to +176 °C) Conveyor speed: 120 ft./min. (30.45 m/min.) Material: Outer tube: Steel. Piston rod: Chrome plated steel.

ACE ACE Controls Inc. · Tel. 800-521-3320 · (248) 476-0213 · Fax (248) 476-2470 · E-mail: shocks@acecontrols.com · www.acecontrols.com 115

Adjustment Instructions for HB-12 to HB-70 and HBD-15 to HBD-40

View in direction of arrow

Adjustment of HB dampers is only possible when the piston rod is **fully** extended or **fully** compressed. On HBD versions, adjustment is only possible when the piston rod is **fully** extended.

strong damping

for slower velocity

Rotate rod clockwise 🔿

soft damping

116

Rotate rod anti-clockwise for higher velocity

1. Hold outer body.

- a) When piston rod is fully extended: Adjust damping by turning the piston rod as shown in the picture. Whilst rotating, pull the piston rod gently, to ensure the adjuster locates in the end cap.
 - b) When the piston rod is fully compressed:
 Adjust the damping by turning the piston rod as shown in the picture. Whilst rotating, push the piston rod gently, to ensure the adjuster locates in the end cap.
- 3. When resistance is felt when rotating the piston rod, stop turning. You will be at the end of the adjustment.
- NOTE: Do not rotate piston rod too quickly as damage could occur. 4. Check the damping, if required repeat step 1 to 3.
- 5. On HBD versions, adjustment is only possible when the piston rod is fully extended.

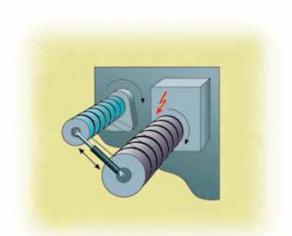
Hydraulic Dampers

Application Examples

Swinging movements cushioned by hydraulic dampers

Passengers always feel the swinging movement involved when cable cars arrive at the ski station.

Maintenance-free **hydraulic dampers** type **HB-40-300-EE-X-P** cushion these movements perfectly. Designers of the cable cars, connected by means of an articulated joint via a four-point frame and connection guide to the suspension rod, profit from the ability of the adjustable dampers to absorb compressive forces of up to 2,248 lbs on either side.

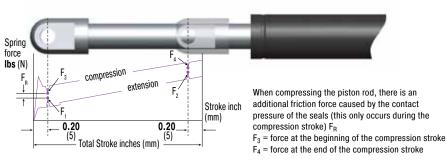

Hydraulic dampers for added convenience when operating cable cars

Hydraulic dampers bring the sled movement of this textile machine to a gentle stop.

At the turning point of 287 lbs reeling spools, a sled should move up and down smoothly without causing a collision at the end of stroke position. The solution was provided by the hydraulic damper **DVC-32-100**. A self-contained sealed unit, ready to install and maintenance-free these units are ideal for precise control of speeds in both directions of travel. The travel speed is maintained throughout the entire stroke and can be independently adjusted in each direction of travel. Thanks to their compact design and wide choice of mounting accessories, these dampers could be easily integrated into this machine.

Textile machine unreels threads even better

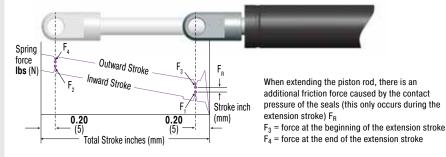
Precise unreeling


Function, Calculation and Mounting Tips

Gas springs are universally accepted, wherever you want to

- push
- · pull
- lift
- lower. or
- position

covers, lids or other components by hand without using an external energy source. ACE gas springs are individually filled to a predetermined pressure to suit a customer's requirement (extension Force F_1). The cross-sectional area of the piston rod and filling pressure determines the extension force $F = p^*A$. During the compression of the piston rod, nitrogen flows through an orifice in the piston from the full bore side of the piston to the annulus. The nitrogen is compressed by the volume of the piston rod. As the piston rod is compressed the pressure increases, so increasing the reaction force (progression). The force depends on the proportional relationship between the piston rod and the inner tube diameter, which is approximately linear.


Force-Stroke Characteristics of Gas Spring (Push Type)

F₁ = nominal force at 68 °F – this is the force figure normally used when specifying the gas spring

F₂ = force in the complete compressed position

Force-Stroke Characteristics of Traction Gas Spring (Pull Type)

F_1 = nominal force at 68 °F – this is the force figure normally used when specifying the gas spring

F₂ = force in the complete extended position

4.50

² Friction F_R

approx. Ibs (N)

12.36 (55) - 31.47 (140)

22.48 (100) - 44.96 (200)

(20) - 8.99 (40)

Gas Springs (Pull Type)

¹ Progression

approx. %

23

10

20

40

Туре

GZ-15

GZ-19

GZ-28

GZ-40

¹ The progression (the slope of the force line in the diagrams above) is due to the reduction of the internal gas volume as the piston rod moves from its initial position to its fully stroked position. The approx. progression values given above for standard springs can be altered on request. Effect of temperature: The nominal F₁ figure is given at 68 °F. An increase of 18 °F will increase force by 3.4%. Filling tolerance on F₁ force: ±7 %.

² Depending on the filling force.

³ Depending on the stroke.

Service Life

Filling tolerance: ±7 %.

Gas Springs (Push Type)

¹ Progression

approx. %

26 - 39 3

30 - 40 3

58 - 67 3

37 - 49 3

28

20

25

27

25

Туре

GS-8

GS-10

GS-12

GS-15

GS-19

GS-22

GS-28

GS-40

GS-70

Effect of temperature: An increase in temperature of each 18 °F will increase force by approx. 3.4 %.

² Friction F_R

approx. Ibs (N)

2.25 (10)

2.25 (10)

4.50 (20)

4.50 (20)

6.74 (30)

6.74 (30)

8.99 (40)

11.24 (50)

11.24 (50)

Temperature range: -4 $^\circ\text{F}$ to 176 $^\circ\text{F}$ – special seals from -49 $^\circ\text{F}$ to 392 $^\circ\text{F}.$

Mounting: The gas springs should ideally be installed with the **piston rod pointing downwards** to use the end damping during the extension stroke to smoothly decelerate the motion of the gas spring. Some ACE gas springs have a uniquely designed front bearing with an integrated grease chamber allowing the gas spring to be mounted and operated in any position if required.

When fitting the gas springs ensure that the stroke is fully extended (GZ type fully compressed), this makes assembly and disassembly much easier. Support the moving mass/flap during assembly or disassembly to prevent accidents. To avoid twisting or side loading, it is recommended that ball joints or other pivoted mounting attachments are used. The mounting attachments must always be securely tightened onto the threaded studs of the gas spring. ACE gas springs are maintenance-free. DO NOT oil or grease the piston rod!

The piston rod must be protected from any hits, scratches or dirt and especially paint. Damage to the surface finish of the piston rod will destroy the sealing system and cause loss of pressure. The outer body must not be deformed or mechanically damaged.

ACE gas springs can be stored in any position. Experience has shown that long storage periods do not result in loss of pressure. However you may experience some "stiction" requiring a higher effort to move the gas spring for the first time after a long storage period.

Generally, ACE gas springs are tested to 70,000 to 100,000 complete strokes. This is equivalent to the seal lifetime (depending on model size) to a distance travelled of 6.21 miles – for lifetime of traction gas springs see pages 150 to 161. During these tests the gas spring must not lose more than 5% of its pressure. Depending upon the application and operating environment, the service life of these gas springs may be much longer. In practice 500 000 strokes or more have been achieved on some applications.

Industrial Gas Springs

Adjustment Instructions Valve, Filling Kit

Adjustment Instructions Valve with ACE DE-GAS

Adjustment Instruction

1. Hold gas spring valve up.

- 2. Insert DE-GAS adjuster knob on thread of the valve.
- 3. Press the DE-GAS adjuster knob with light hand force until you can hear the nitrogen escaping. Press only briefly to avoid too much nitrogen being discharged.
- After adjustment, remove the DE-GAS adjuster knob, mount the end fittings and test the gas spring in your application. If necessary repeat the procedure.

If you use 2 gas springs in parallel, both gas springs should have the same force to avoid bending forces or side load on the application. If necessary return to ACE to refill both gas springs to the same (average) force.

If too much nitrogen is discharged, the units can be returned to ACE for re-gassing.

Gas Spring Refilling Kit

The **ACE gas spring refilling kit** offers you the opportunity to fill gas springs on location or adapt them individually. The refilling kit is equipped with all the parts you need to fill gas springs. Very precise filling of the gas springs is possible using the digital manometer. The table for determining the filling pressure of the gas springs is included with the case. The only thing missing from the delivery is the nitrogen.

The refilling kit contains all filling bells and adjuster knobs for the current ACE gas spring range.

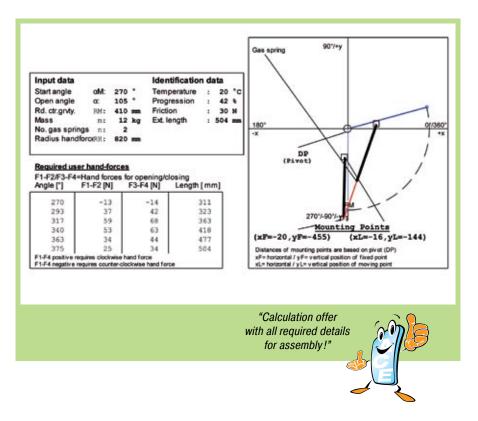
Part number for the complete gas spring refilling kit: GS-FK-C

119

The refilling kit suits 2,900 psi nitrogen bottles with a thread of CGA 680. Nitrogen bottles not included. Other connections are available upon request.

Gas springs filled with the refilling kit must be measured **on a calibrated measurement system by ACE** for repeat production.

Calculation and Safety Instructions


Calculation

To obtain the optimum operation for a gas spring it is important to identify the following points:

- · gas spring size
- · required gas spring stroke
- · mounting points on flap and frame
- · extended length of the gas spring
- · required extension force
- hand forces throughout the complete movement on the flap

With our **free calculation service** you can eliminate the time-consuming calculations. Please send us your details by fax or e-mail. Just complete the information shown on the calculation formula page number 121. Please attach a sketch of your application (a simple hand sketch is sufficient) in side view. Our application engineers will determine the optimum gas springs and mounting points to satisfy your requirements.

You will receive a quotation showing the opening and closing forces and our recommended mounting points to suit your application.

Safety Instructions

120

Gas springs are filled with pure nitrogen gas. Nitrogen is an inert gas that does not burn or explode and is not poisonous.

Please note!: the internal pressure of gas springs can be up to 4,351 psi. Do not attempt to open or modify them.

ACE gas springs will operate in surrounding temperatures from -4 °F to 176 °F. We can equip our springs with special seals to withstand temperatures as low as -49 °F or as high as 392 °F. Gas springs should not be placed over heat or in open fire!

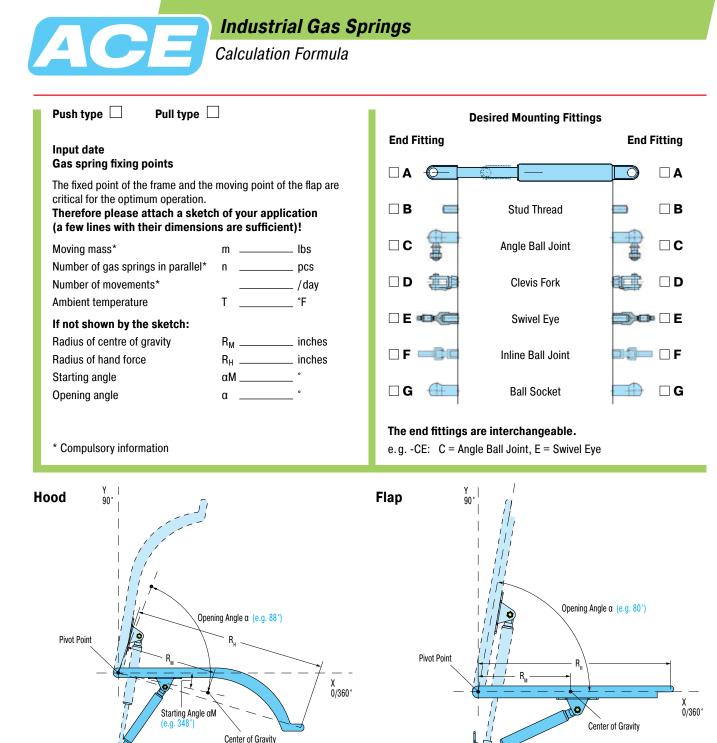
Disposal/Recycling: Gas Springs consist mostly of metal and the metal could be recycled, but first the gas pressure must be removed. Please ask for our disposal recommendations which advise how to depressurize the gas springs and make them safe to recycle.

All gas springs are marked with the part number, the production date and a warning sign "Do not open high pressure". We are not responsible for any damages of any kind that arises due to goods that are not marked accordingly.

Gas springs should be installed with the piston rod down. This position ensures best damping quality. ACE gas springs include an integrated grease chamber which allows for alternative mounting opportunities.

Gas springs should not be exposed to dynamic or static side load forces. This can cause bending of the piston rod premature failure.

Gas springs are maintenance-free. Do not grease or oil the piston rod.


The piston rod must not be painted and should be protected against shocks, scratches and dirt. The cylinder should not be deformed as such damage would destroy the sealing system.

ACE gas springs can be stored in any position. Pressure lost through long storage is not to be expected. There are no known negative values, but there may be a sticking effect the first time you compress a spring. This may require a higher initial force to operate the gas spring for the first time (initial breakaway force).

Gas springs of all sizes are classified as pressure vessels according to the pressure device directive 97/23/EC. They have a pressure level of more than 7.25 psi bar. All ACE gas springs are developed, manufactured and tested according to this directive.

The tolerance for the installation length is generally deemed to be \pm .08". If very high demands are placed on durability and stability, please avoid the combination of small diameter + long stroke + high force.

The filling tolerance: ±7 %.

Please send us a sketch with dimensions of your application! Without this sketch we won't be able to calculate.

Comments	Requirement per year	
	Machine type / reference	
Sender		
Company	Dept.	
Address	Name	
	Telephone	Fax
Internet	E-Mail	

121

Please copy, complete and fax to ACE: Fax (248) 476-2470

Industrial Gas Springs GS-8 to GS-70 (Push Type)

ACE industrial gas springs are maintenance-free and self-contained. They are available with body diameters from .31" up to 2.76", and forces from 2 lbs (10 N) up to 2,923 lbs (13,000 N) ex. stock. ACE gas springs offer a high service life with a wear-resistant coating on the piston rod. Also an integrated low friction bearing with grease chamber which provides a very low break away force (GS-19 to GS-40). It allows them to be mounted in any orientation, although rod downwards is preferable if you want to take advantage of the built-in end position damping. The valve allows the force to be adjusted to your specific requirements. A wide variety of interchangeable end fittings makes installation easy and versatile. ACE gas springs are universally applicable wherever you have lifting and lowering. They remove the need for "muscle power" and provide controlled motion for lids, hoods, machine guards etc. The free ACE selection software guickly specifies the correct gas spring for your individual application and we can deliver, usually within 24 hours.

"Force adjustable to your specific requirements – with gas valve ex. stock!"

Filled with High Pressure

Gas Valve

Nitrogen Gas

Precision Steel Tube

Metering Orifice for Controlled Extension and Compression Velocities

Oil Zone for End Position Damping and Lubrication (recommended mounting position: piston rod downwards)

Integral Grease Chamber for Increased Lifetime (GS-19 to GS-40)

Main Bearing

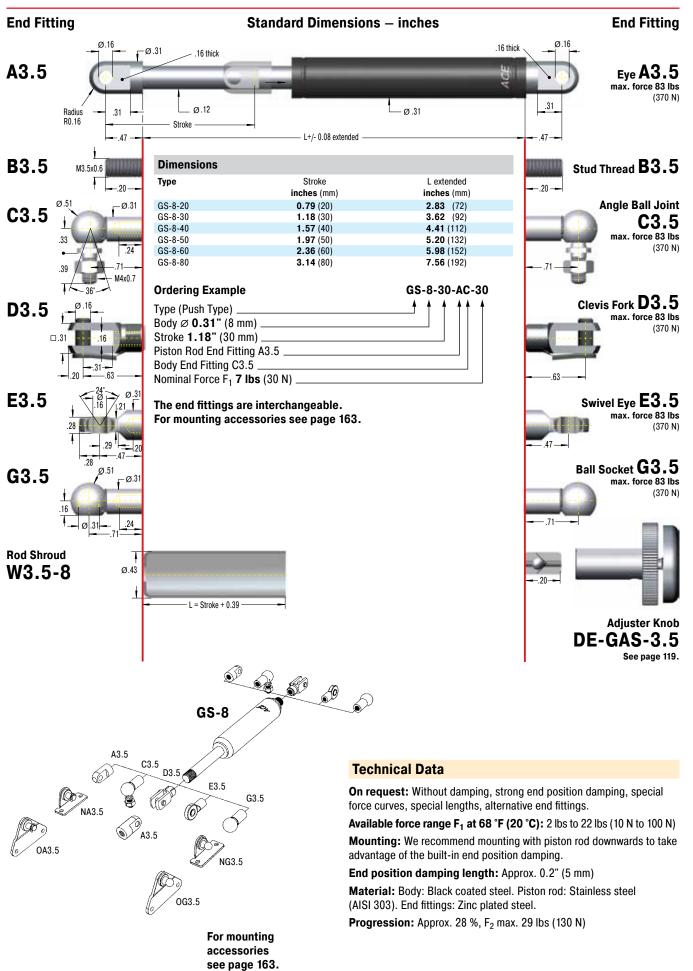
Piston Rod

Function: ACE industrial gas springs provide a maintenance-free sealed for life system, being filled with high pressure nitrogen gas. The oil zone filling provides end position damping and internal lubrication for a long lifetime. On the extension stroke of the gas spring, for example when opening a car tailgate, the nitrogen gas flows through the metering orifice in the piston to provide a controlled opening speed and the oil zone provides damping at the fully open position to avoid impact damage.

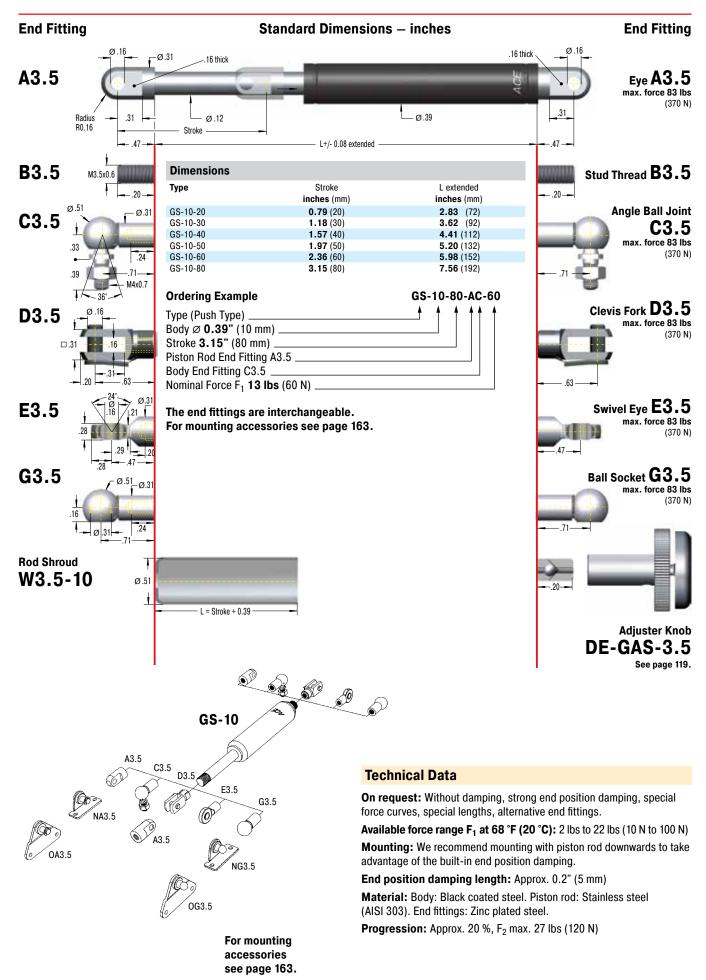
The gas spring should be mounted "rod down" for this damping to be effective. On closing the tailgate the gas spring helps support the weight. The metering orifice controls the extension and compression velocities of the gas spring.

Operating fluid: Nitrogen gas and oil

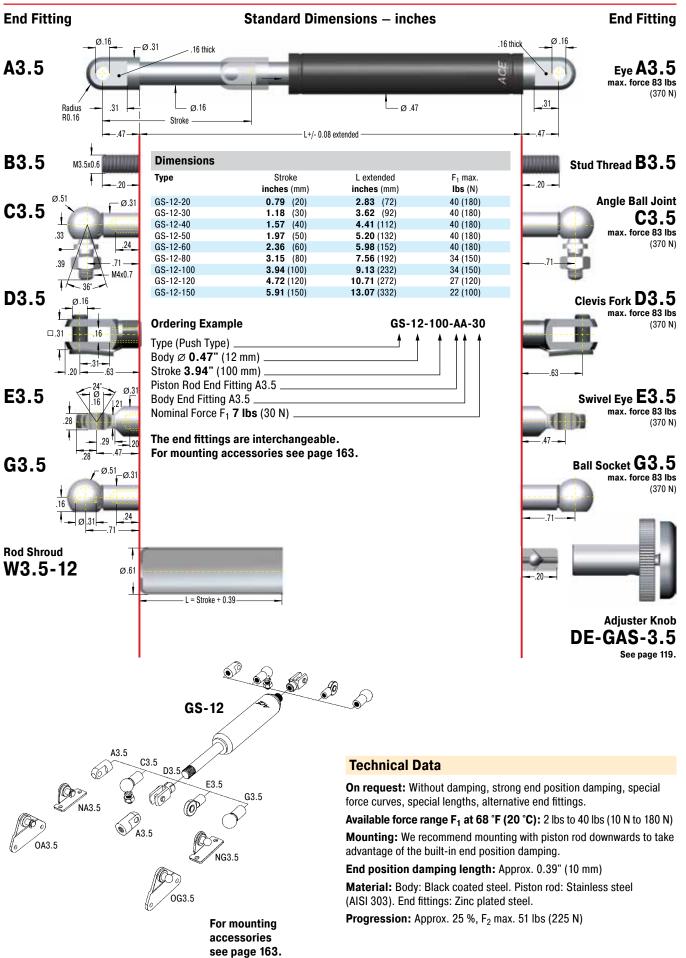
Operating temperature range: -4 °F to +176 °F


On request: Without damping, different end position damping, special force curves, special lengths, alternative end fittings.

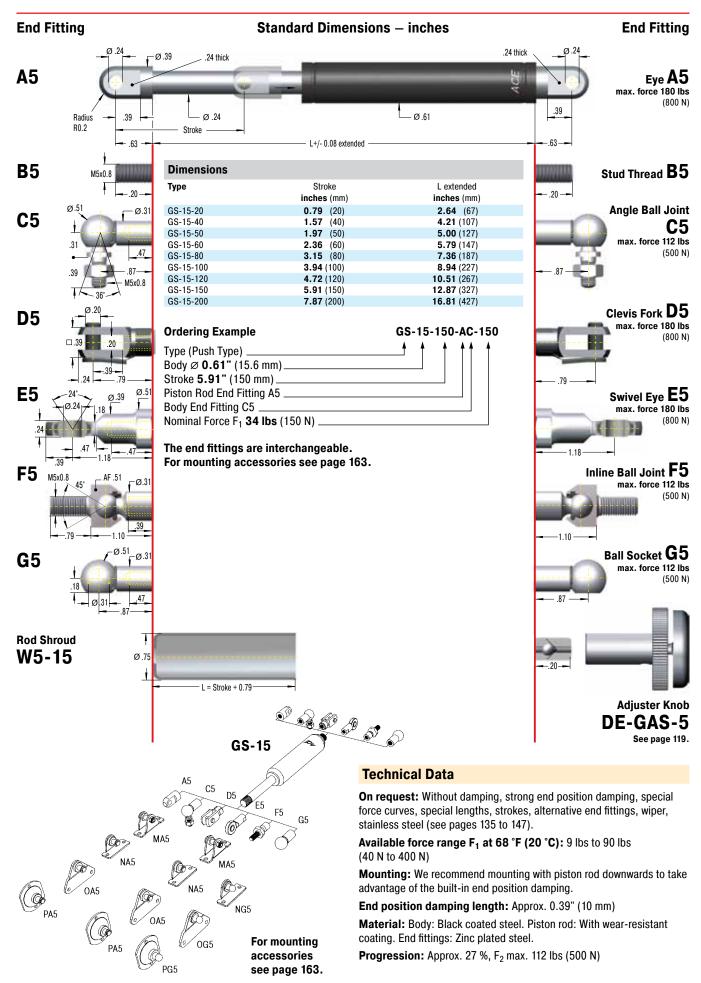
Industrial Gas Springs GS-8 (Push Type)


Extension Forces 2 lbs to 22 lbs (10 N to 100 N) [when Piston Rod Compressed up to 29 lbs (130 N)]

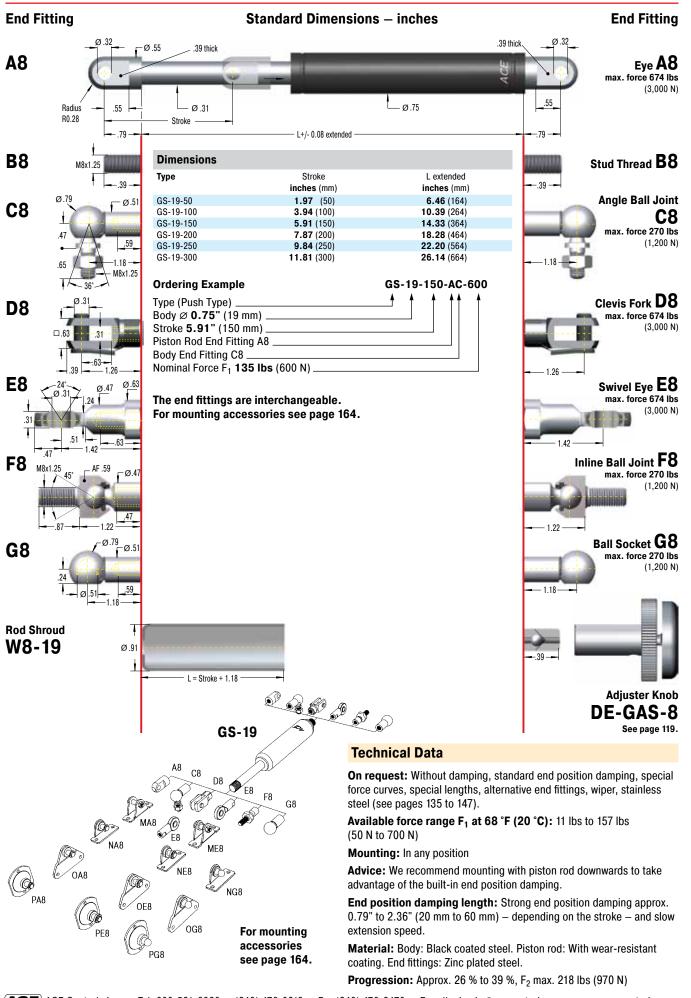
Industrial Gas Springs GS-10 (Push Type)


Extension Forces 2 lbs to 22 lbs (10 N to 100 N) [when Piston Rod Compressed up to 27 lbs (120 N)]

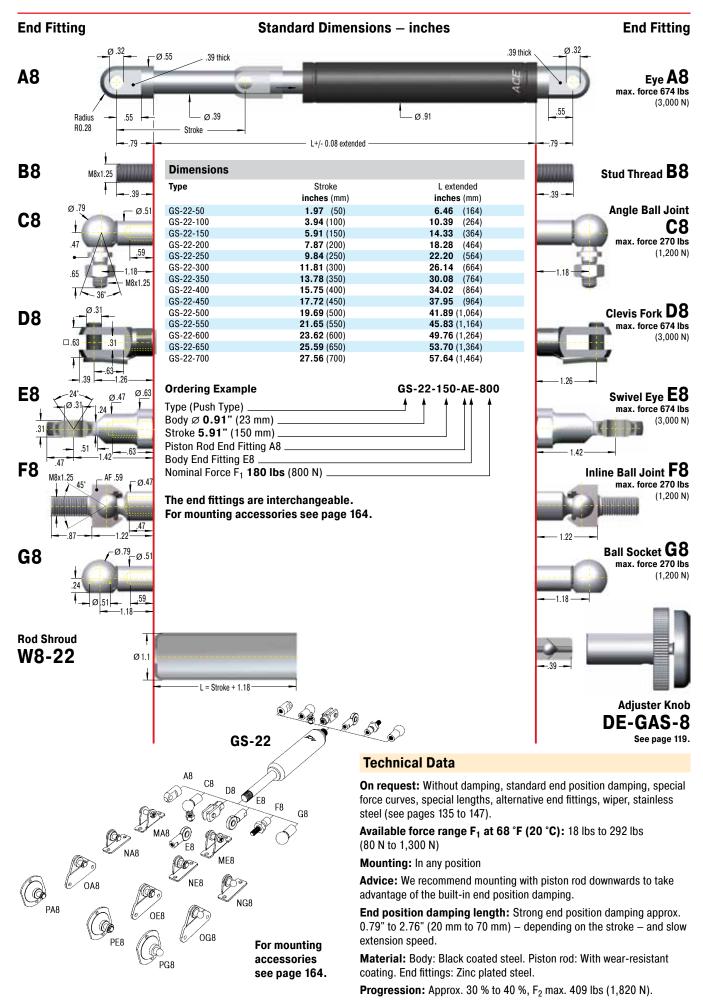
Industrial Gas Springs GS-12 (Push Type)


Extension Forces 2 lbs to 40 lbs (10 N to 180 N) [when Piston Rod Compressed up to 51 lbs (225 N)]

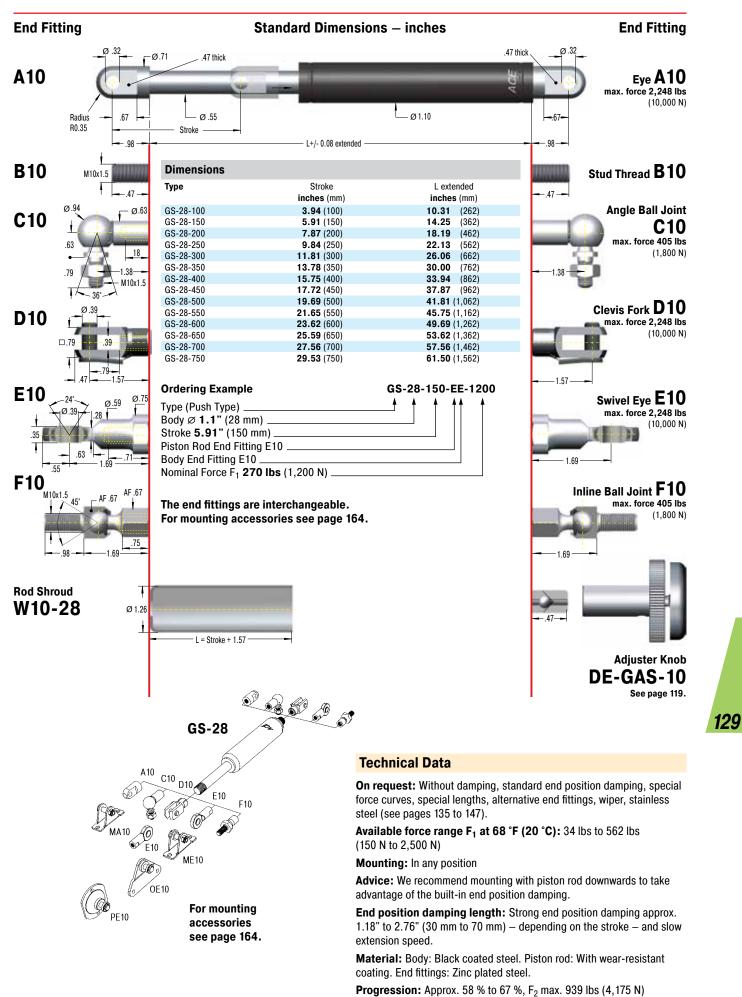
Industrial Gas Springs GS-15 (Push Type)


Extension Forces 9 lbs to 90 lbs (40 N to 400 N) [when Piston Rod Compressed up to 112 lbs (500 N)]

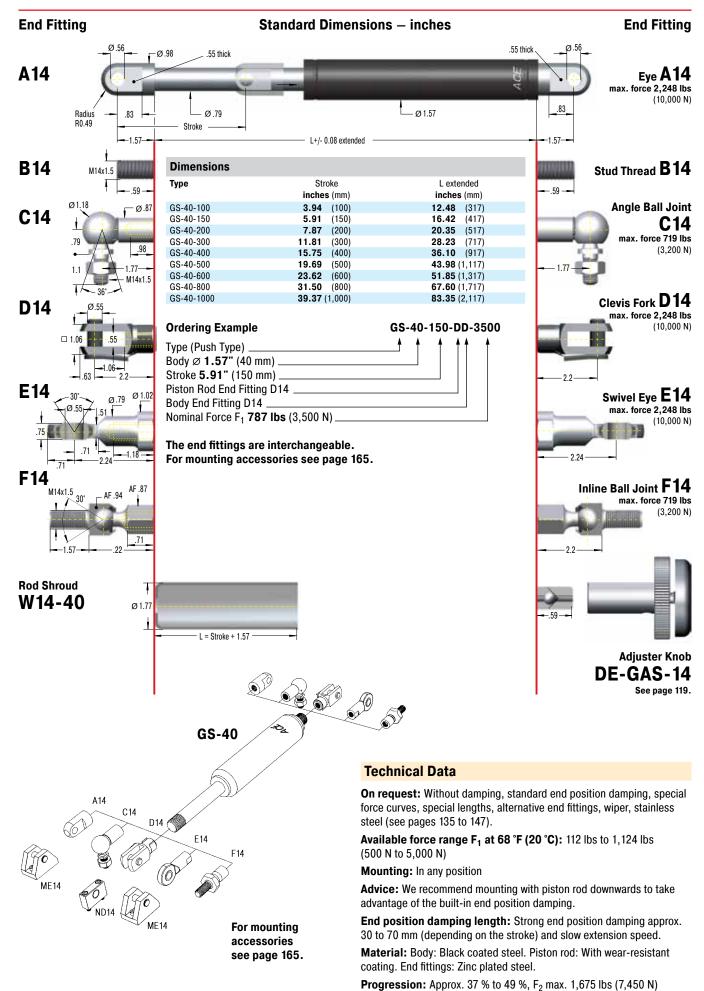
Industrial Gas Springs GS-19 (Push Type)


Extension Forces 11 lbs to 157 lbs (50 N to 700 N) [when Piston Rod Compressed up to 218 lbs (970 N)]

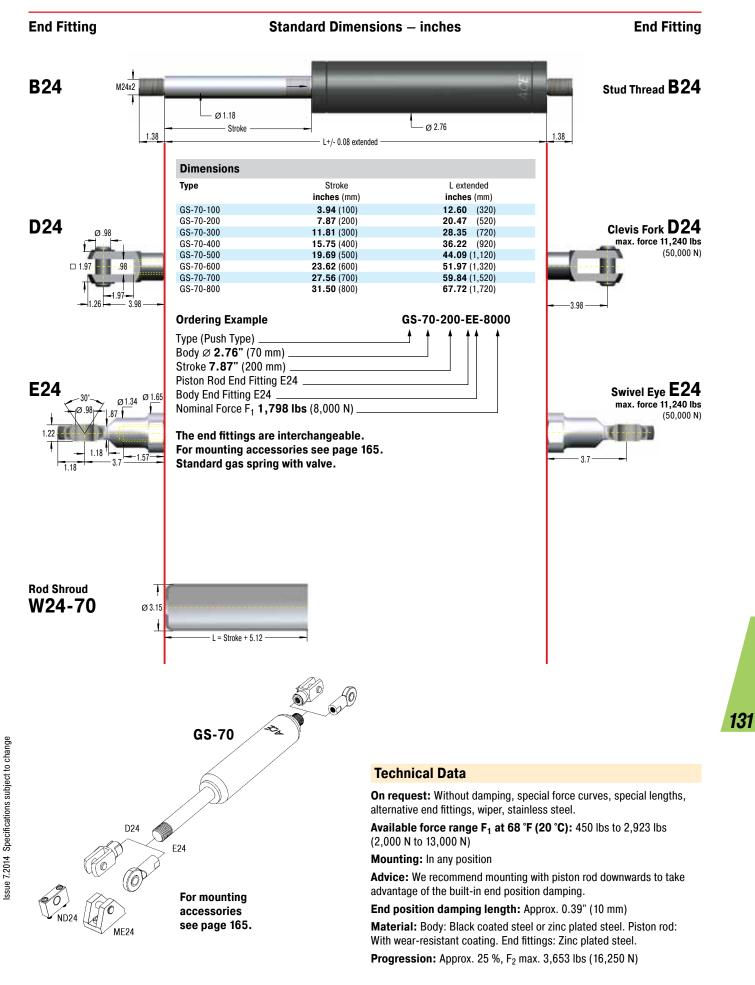
Industrial Gas Springs GS-22 (Push Type)

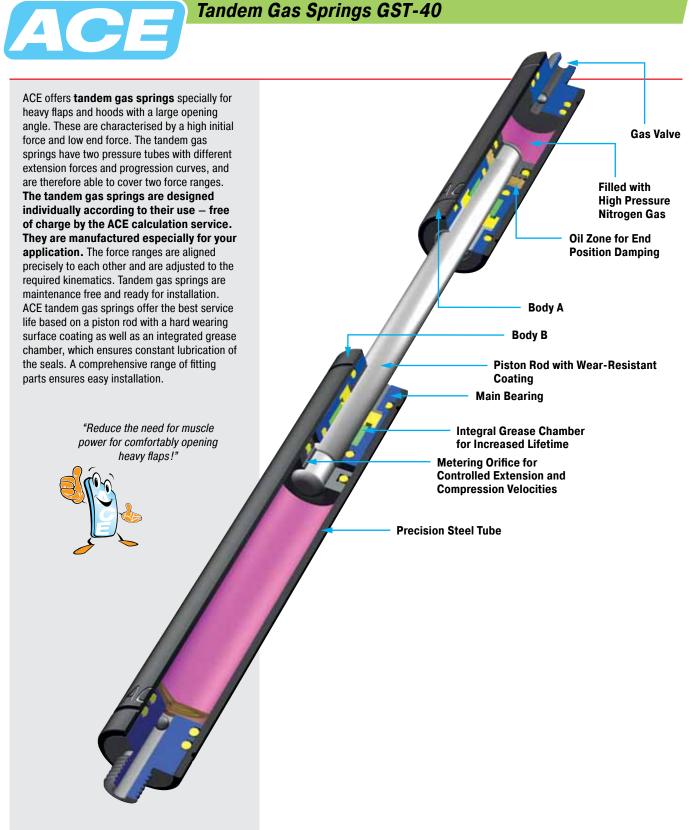

Extension Forces 18 lbs to 292 lbs (80 N to 1,300 N) [when Piston Rod Compressed up to 409 lbs (1,820 N)]

Industrial Gas Springs GS-28 (Push Type)


Extension Forces 34 lbs to 562 lbs (150 N to 2,500 N) [when Piston Rod Compressed up to 939 lbs (4,175 N)]

Industrial Gas Springs GS-40 (Push Type)


Extension Forces 112 lbs to 1,124 lbs (500 N to 5,000 N) [when Piston Rod Compressed up to 1,675 lbs (7,450 N)]



Industrial Gas Springs GS-70 (Push Type)

Extension Forces 450 lbs to 2,923 lbs (2,000 N to 13,000 N) [when Piston Rod Compressed up to 3,653 lbs (16,250 N)]

Operating fluid: Nitrogen gas and oil

Material: Piston rod: With wearresistant coating. Bodies and end fittings: Zinc plated steel.

Mounting: According to calculation. Please adopt the mounting points determined by ACE.

Operating temperature range: -4 °F to 176 °F

On request: Material AISI 304/303 (V2A) and material AISI 316L/316Ti (V4A).

Tandem Gas Springs GST-40

Extension Forces 67 lbs to 1,124 lbs (300 N to 5,000 N)

Stainless Steel Industrial Gas Springs (Push Type)

Stainless steel gas springs (push type) Material AISI 304/303 (V2A), Material AISI 316L/316Ti (V4A)

In addition to the comprehensive range of industrial gas springs with valve, ACE also offers a wide range of industrial gas springs made of stainless steel with body diameters from .31" to 2.76". This high-quality version is also available on request in all stroke lengths and possible extension forces. The comprehensive range of fitting parts ensures easy installation and makes the gas springs universal in use. Stainless steel industrial gas springs are used everywhere that raising and lowering is required. The standard type is filled with a special oil that conforms to the requirements FDA 21 CFR 178.3570 of the food industry. Due to their special properties, non-rusting and low magnetism, they are the preferred equipment for medical and clean-room technology, the foodstuffs industry, electronics and shipbuilding sector.

Gas Valve Rear End Cap in Stainless Steel

Stainless Steel Body

Metering Orifice for Controlled Extension and Compression Velocities

Oil Zone for End Position Damping and Lubrication (recommended mounting position: piston rod downwards)

Front Bearing in Brass

Stainless Steel Piston Rod

"NEW: Standard type with special oil suited for the food industry and available in many sizes ex stock!"

Operating fluid: Nitrogen gas and HLP oil according to DIN 51 524, part 2

Material: Piston rod, body and end fittings: Material AISI 304/303 (V2A) or material AISI 316L/316Ti (V4A).

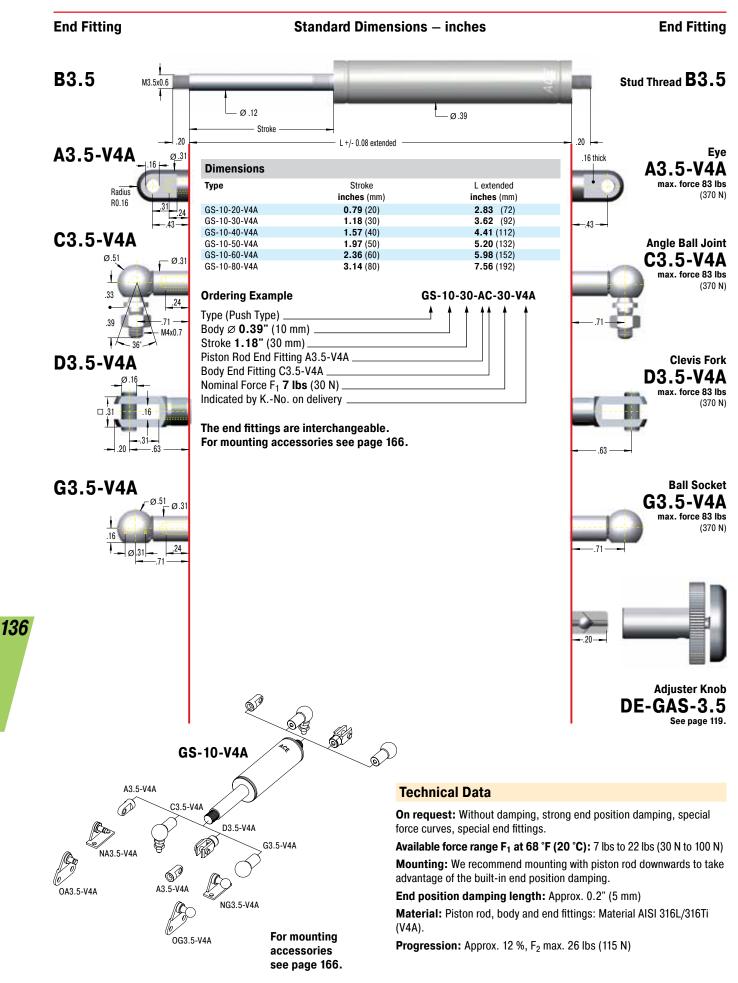
Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

Operating temperature range: -4 °F to 176 °F

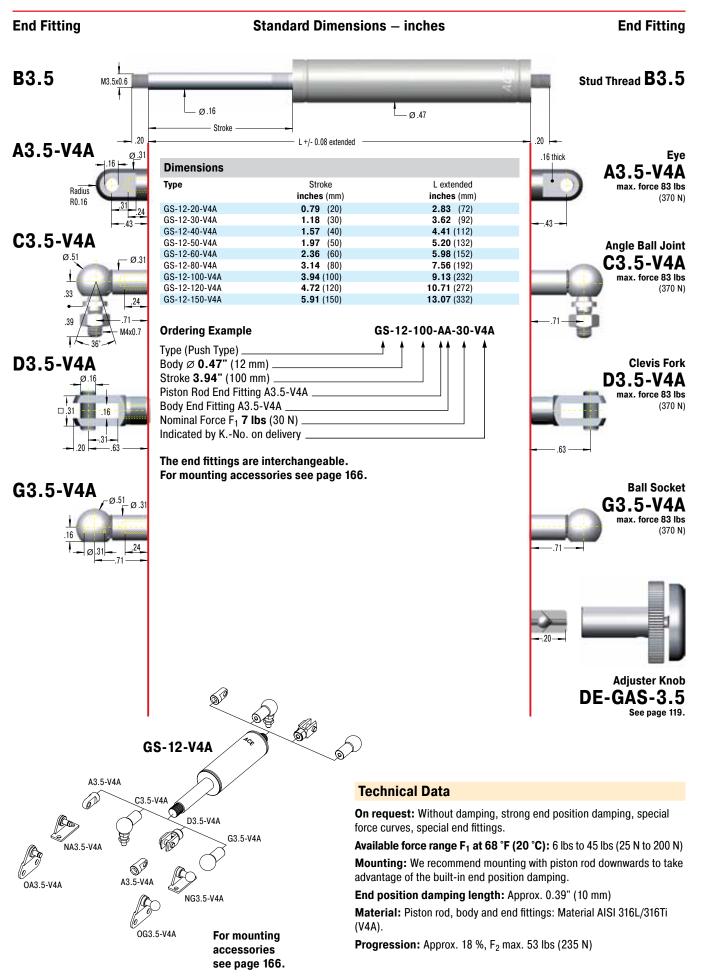
On request: Without damping, strong end position damping, special force curves, wiper, special lengths, alternative end fittings.

Issue 7.2014 Specifications subject to change

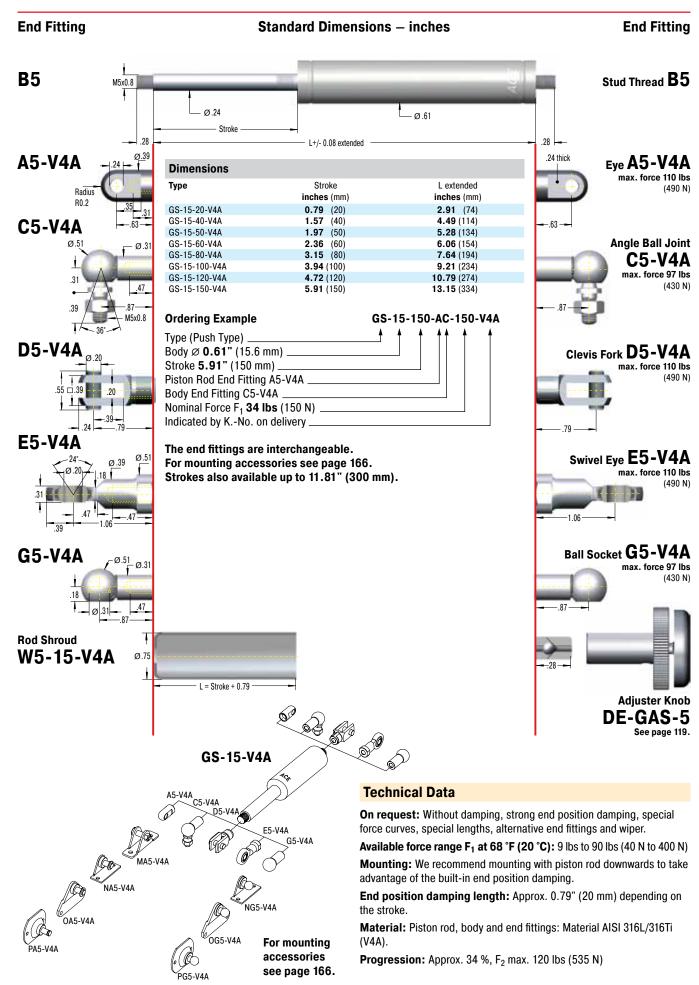
Stainless Steel Gas Springs GS-8-V4A (Push Type)


Extension Forces 6 lbs to 22 lbs (25 N to 100 N) [when Piston Rod Compressed up to 29 lbs (130 N)]

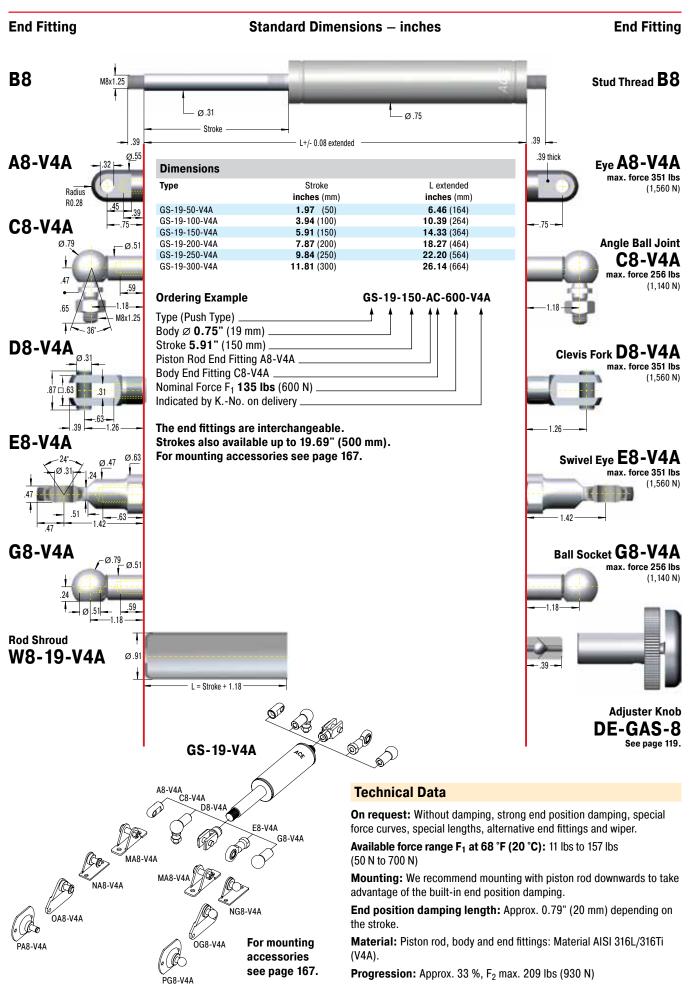
Stainless Steel Gas Springs GS-10-V4A (Push Type)


Extension Forces 7 lbs to 22 lbs (30 N to 100 N) [when Piston Rod Compressed up to 26 lbs (115 N)]

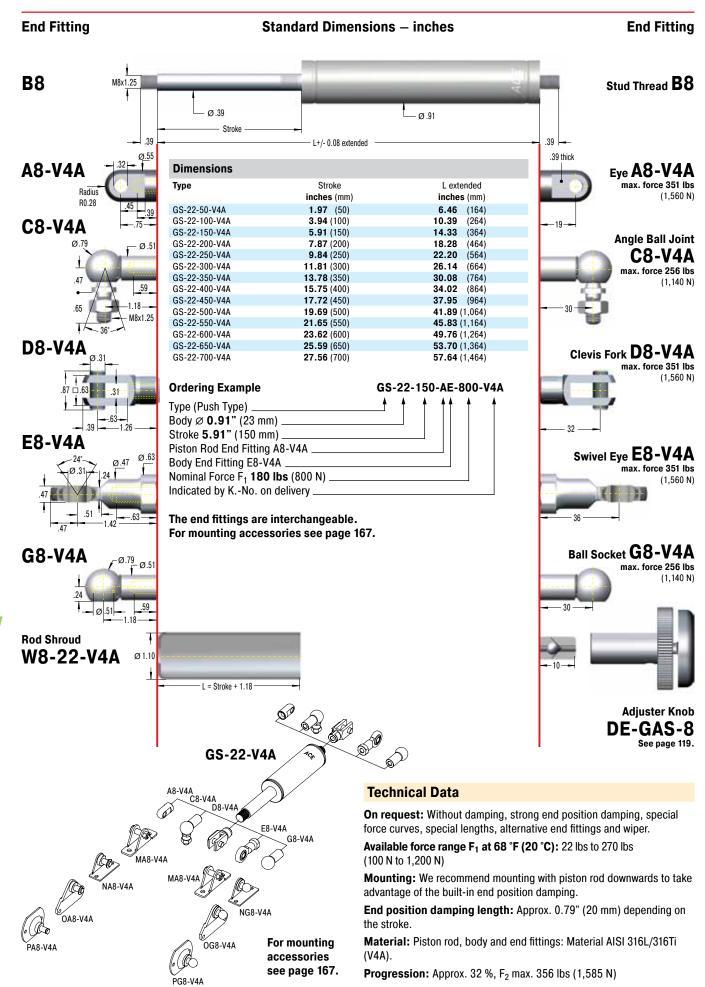
Stainless Steel Gas Springs GS-12-V4A (Push Type)


Extension Forces 6 lbs to 45 lbs (25 N to 200 N) [when Piston Rod Compressed up to 53 lbs (235 N)]

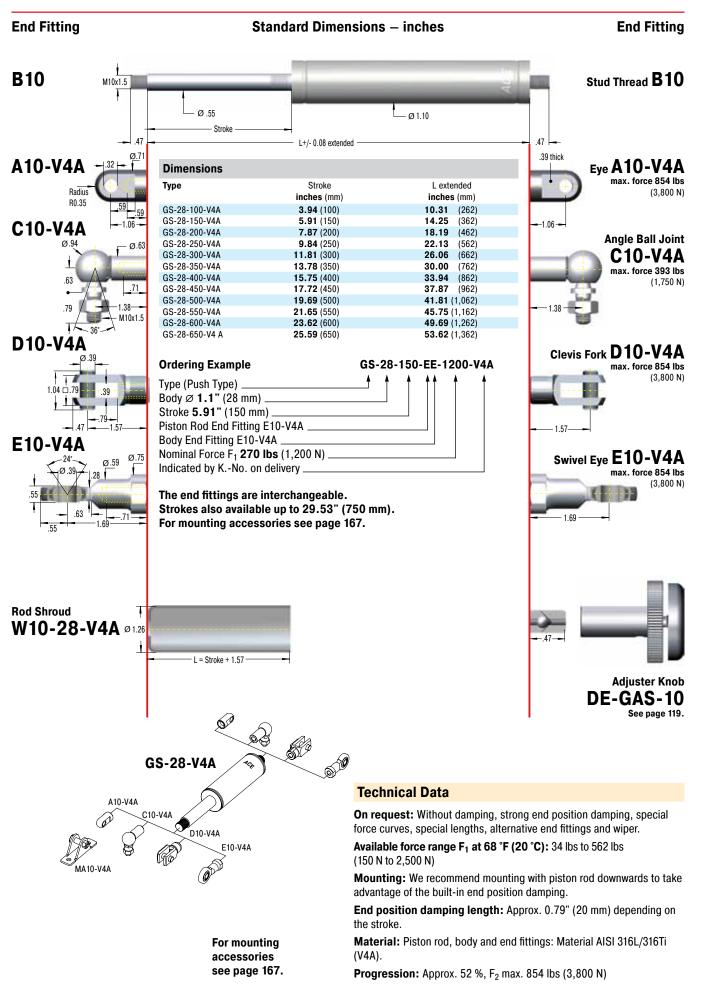
Stainless Steel Gas Springs GS-15-V4A (Push Type)


Extension Forces 9 lbs to 90 lbs (40 N to 400 N) [when Piston Rod Compressed up to 120 lbs (535 N)]

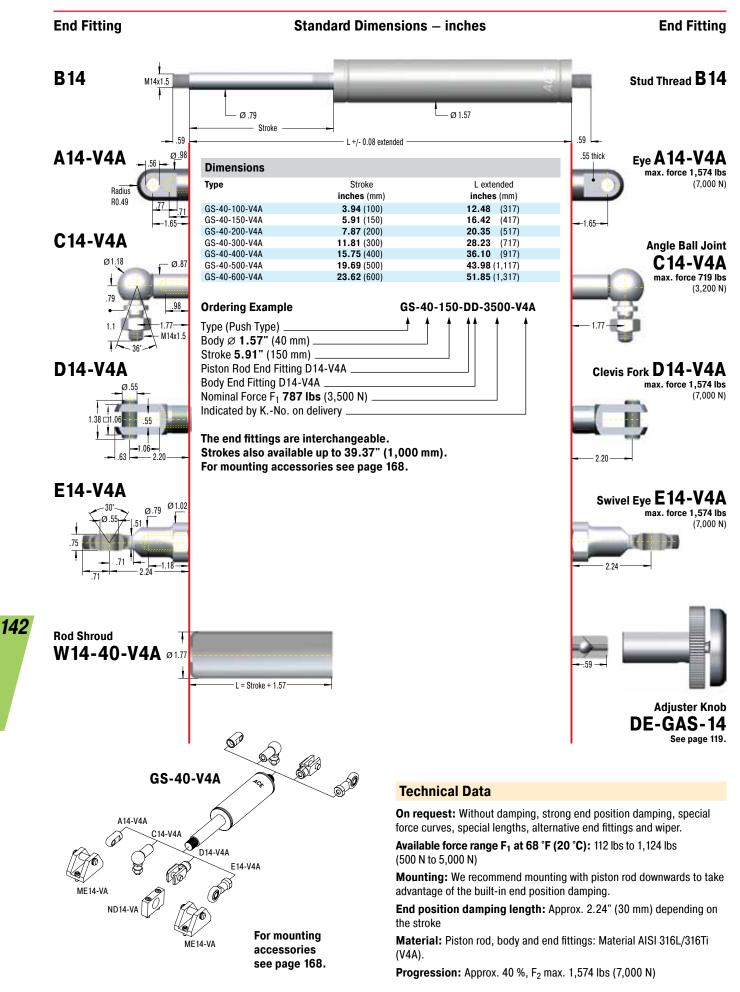
Stainless Steel Gas Springs GS-19-V4A (Push Type)


Extension Forces 11 lbs to 157 lbs (50 N to 700 N) [when Piston Rod Compressed up to 209 lbs (930 N)]

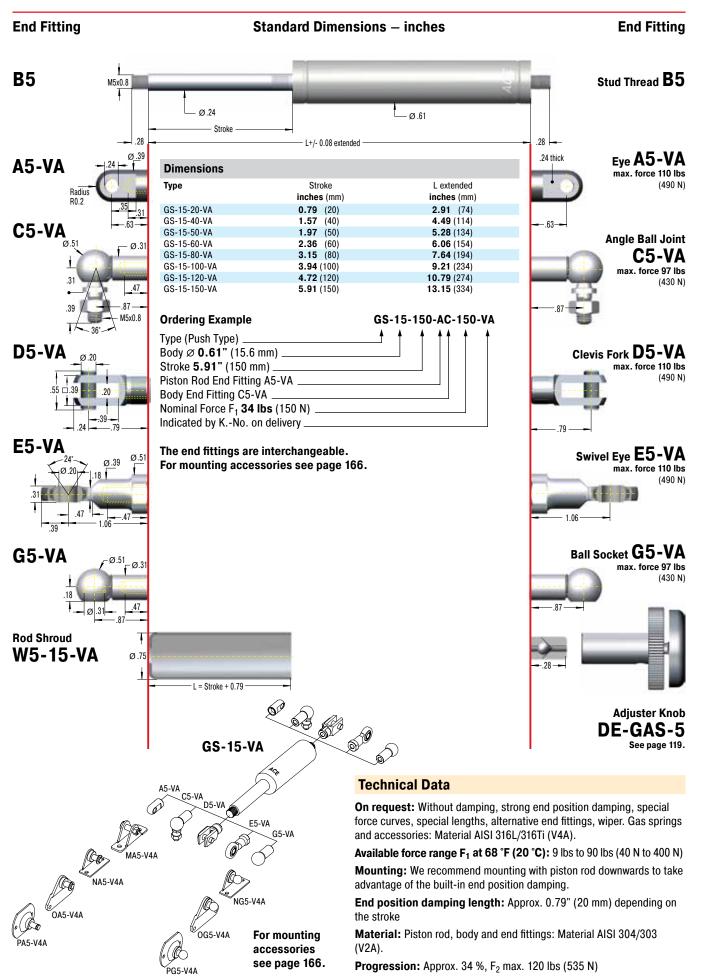
Stainless Steel Gas Springs GS-22-V4A (Push Type)


Extension Forces 22 lbs to 270 lbs (100 N to 1,200 N) [when Piston Rod Compressed up to 356 lbs (1,585 N)]

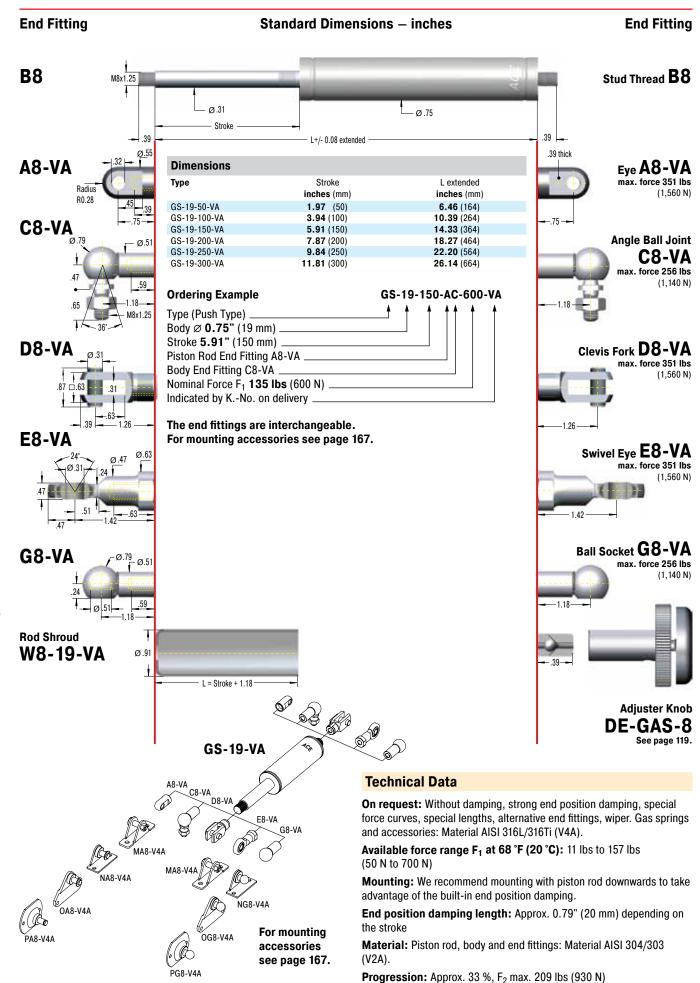
Stainless Steel Gas Springs GS-28-V4A (Push Type)


Extension Forces 34 lbs to 562 lbs (150 N to 2,500 N) [when Piston Rod Compressed up to 854 lbs (3,800 N)]

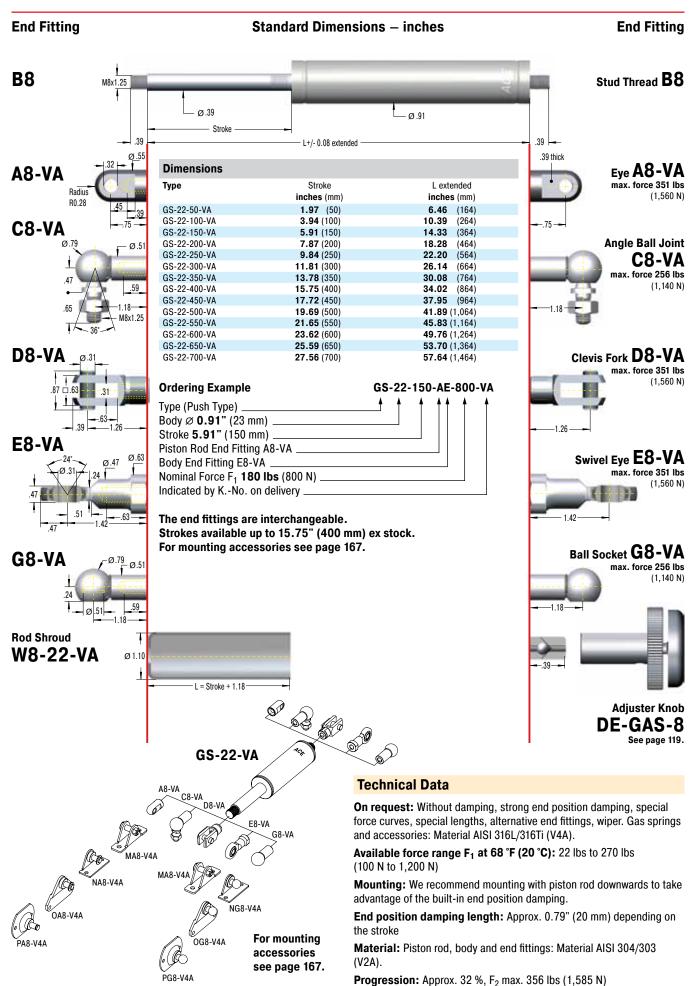
Stainless Steel Gas Springs GS-40-V4A (Push Type)


Extension Forces 112 lbs to 1,124 lbs (500 N to 5,000 N) [when Piston Rod Compressed up to 1,574 lbs (7,000 N)]

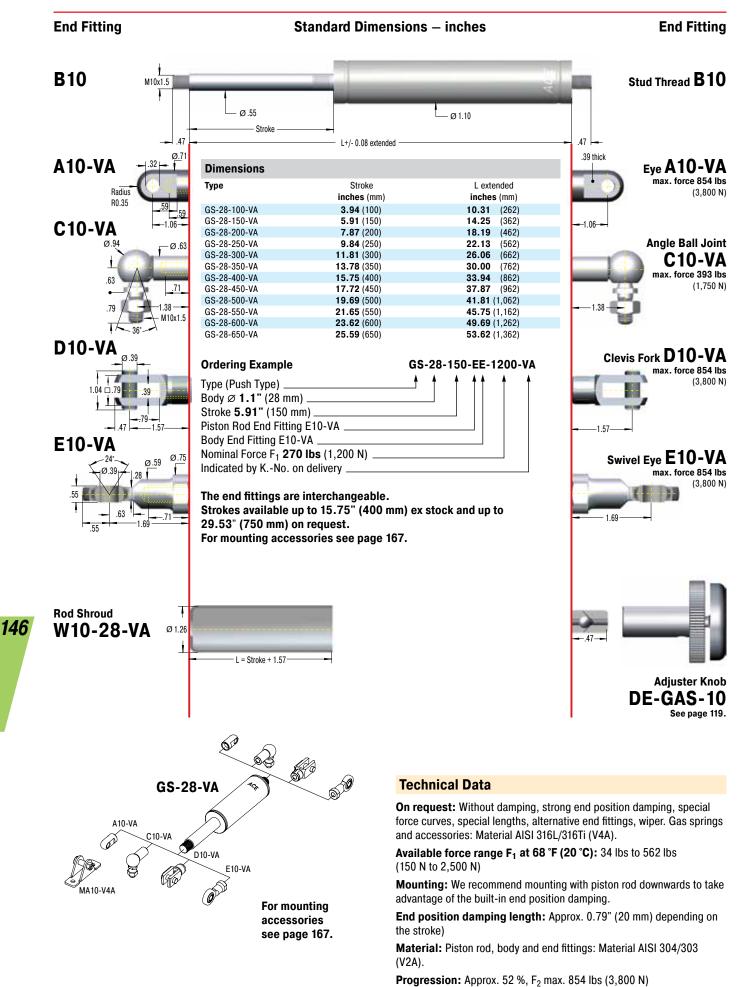
Stainless Steel Gas Springs GS-15-VA (Push Type)


Extension Forces 9 lbs to 90 lbs (40 N to 400 N) [when Piston Rod Compressed up to 120 lbs (535 N)]

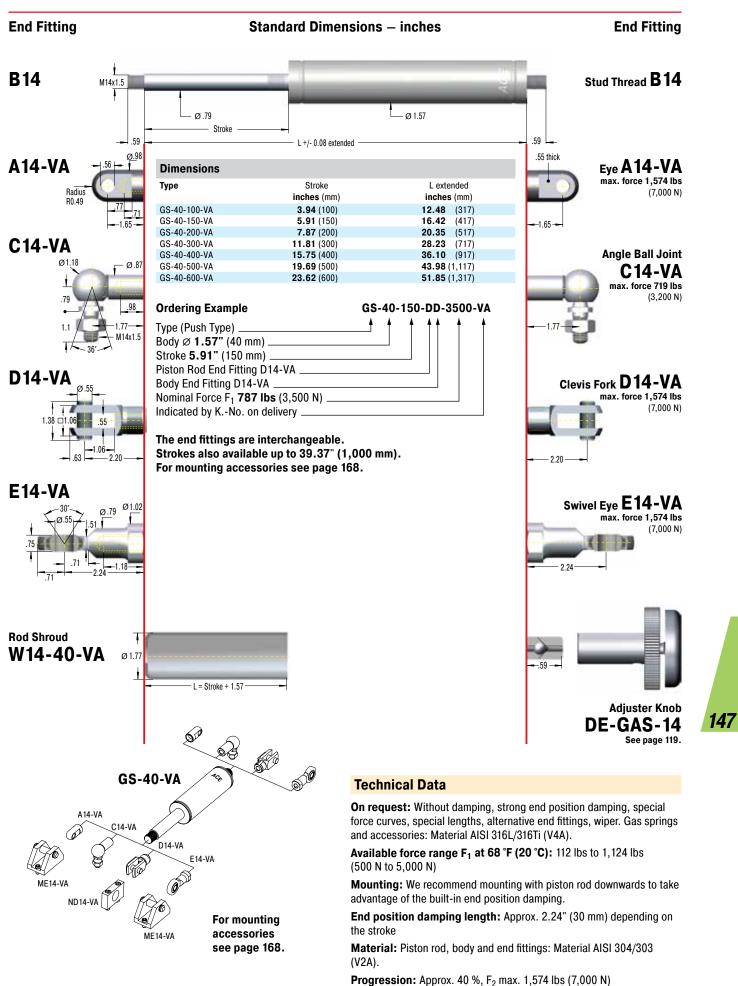
Stainless Steel Gas Springs GS-19-VA (Push Type)


Extension Forces 11 lbs to 157 lbs (50 N to 700 N) [when Piston Rod Compressed up to 209 lbs (930 N)]

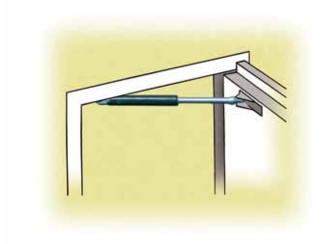
Stainless Steel Gas Springs GS-22-VA (Push Type)


Extension Forces 22 lbs to 270 lbs (100 N to 1,200 N) [when Piston Rod Compressed up to 356 lbs (1,585 N)]

Stainless Steel Gas Springs GS-28-VA (Push Type)


Extension Forces 34 lbs to 562 lbs (150 N to 2,500 N) [when Piston Rod Compressed up to 854 lbs (3,800 N)]

Stainless Steel Gas Springs GS-40-VA (Push Type)


Extension Forces 112 lbs to 1,124 lbs (500 N to 5,000 N) [when Piston Rod Compressed up to 1,574 lbs (7,000 N)]

Industrial Gas Springs

Application Examples

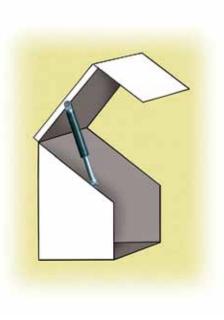
Doors open and close safely

ACE industrial gas springs make opening and closing doors of rescue helicopters easier.

The maintenance-free, sealed systems are installed in the access doors of helicopters of the type EC 135. There, they allow the crew to enter or exit the helicopter quickly, thus contributing to enhanced safety.

The **GS-19-300-CC** gas springs provide a defined retraction speed and secure engagement of the door lock. The integrated end position damper allows gentle closing of the door and saves wear and tear on the valuable, lightweight material.

Industrial gas springs: For safe entry and exit


ACE industrial gas springs prevent injuries during maintenance work on harvesting machines.

The blades of corn pickers are arranged under plastic hoods, which assure proper material flow within the machine. For maintenance purposes, the hoods, weighing about 15 lbs, must be lifted up. To protect maintenance personnel from injury by falling hoods, they are kept in the open position by industrial gas springs of the type **GS-22-250-DD**.

Another advantage they offer is their stability under rough operating conditions due to their wear-resistant coating on the piston rod and the coated housing.

Enhanced protection: Industrial gas springs secure heavy hoods

Protection under the hood

Industrial traction gas springs are maintenance-free and ready to install. They are available ex-stock with body diameters from 0.59" to 1.57" and forces from 7 lbs to 1,124 lbs (30 N to 5,000 N) with valve. ACE traction gas springs offer a long service life due to the hard-chromed piston rod and integral sliding bearing. They can be installed in any position. The traction force can be subsequently adjusted by means of the valve. The comprehensive range of fitting parts ensures easy installation and makes the traction gas springs universal in use. They supply the muscle force and enable the controlled raising and lowering of covers, hoods, flaps etc. With the free ACE calculation service, the traction gas springs are designed with mounting points to fit the individual application, and can be delivered ex-stock as express deliveries within 24 hours.

Gas Valve

ssue 7.2014 Specifications subject to change

Function: ACE industrial traction gas springs are maintenance-free, closed systems, which are filled with pressurised nitrogen gas. Compared to the push type, ACE traction gas springs work in the reverse

way. The piston rod is retracted by the gas pressure in the cylinder. The surface of the piston ring between the piston rod and the inner tube determines the force of the gas spring. Traction gas springs are always mounted with the stroke fully compressed.

— Seals - Piston Rod Main Bearing

Operating fluid: Nitrogen gas **Mounting:** In any position

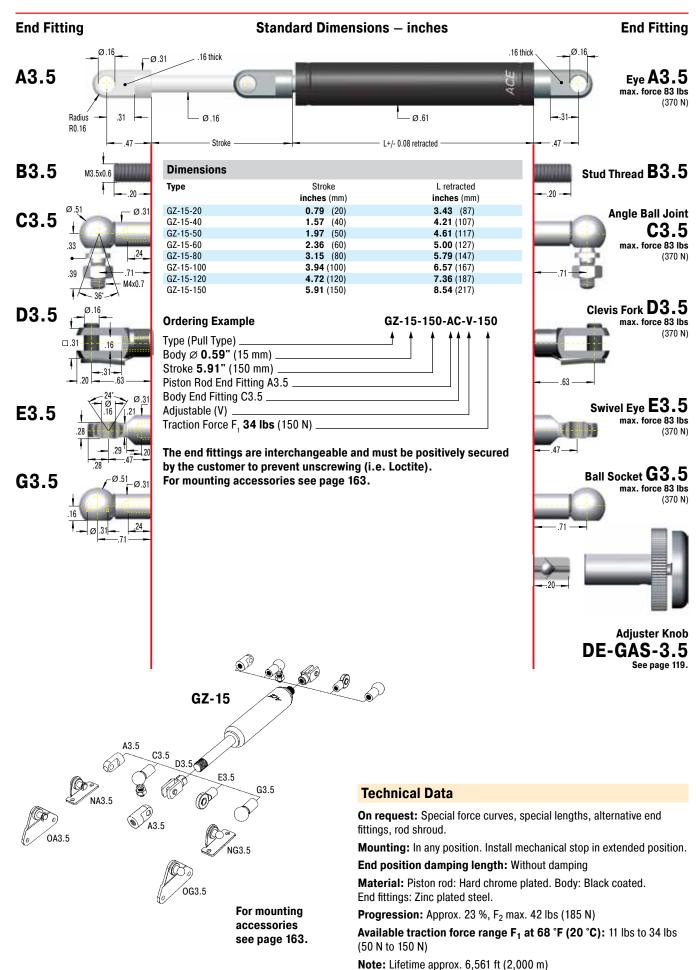
Operating temperature range: -4 °F to 176 °F

On request: Special force curves, special lengths, alternative seals and end fittings.

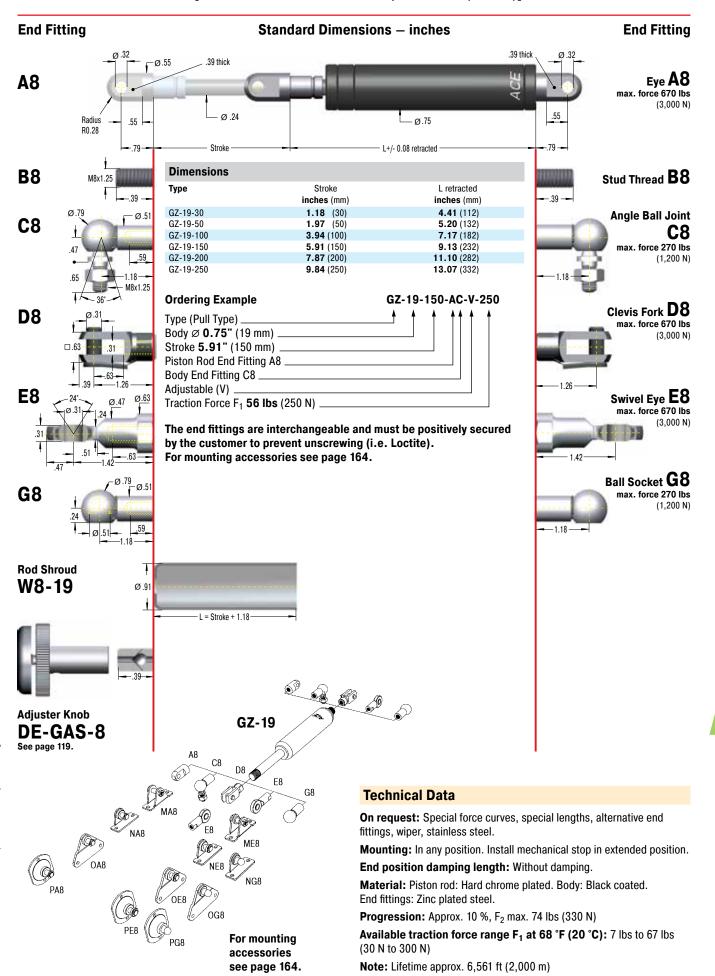
Filled with High Pressure

Piston with Seals

Outer Body

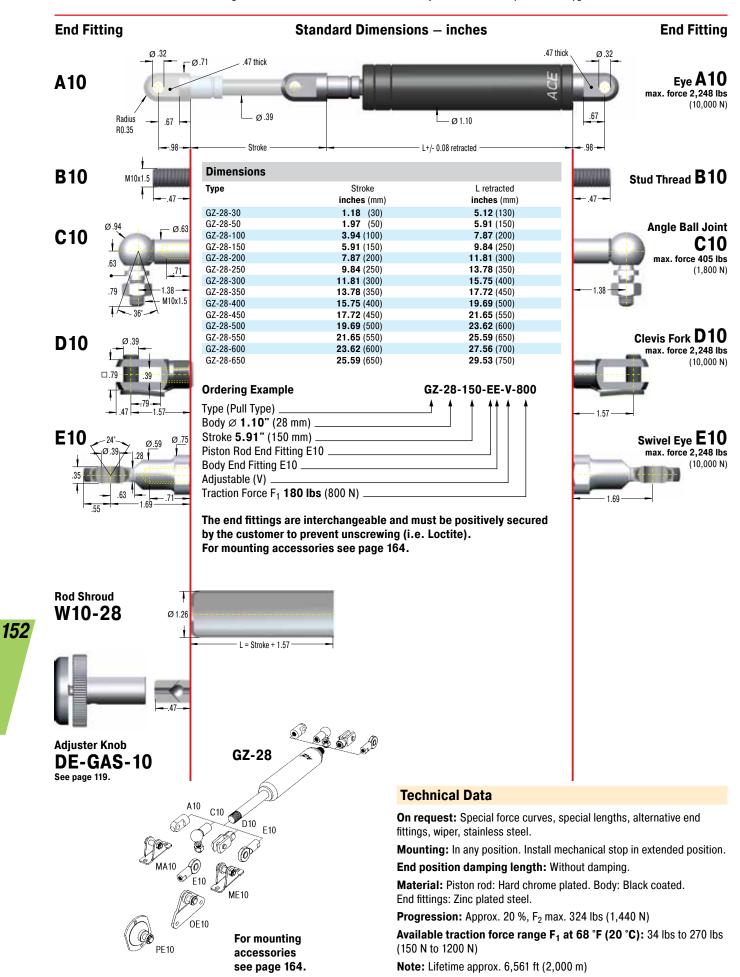

Nitrogen Gas

150


Industrial Traction Gas Springs GZ-15 (Pull Type)

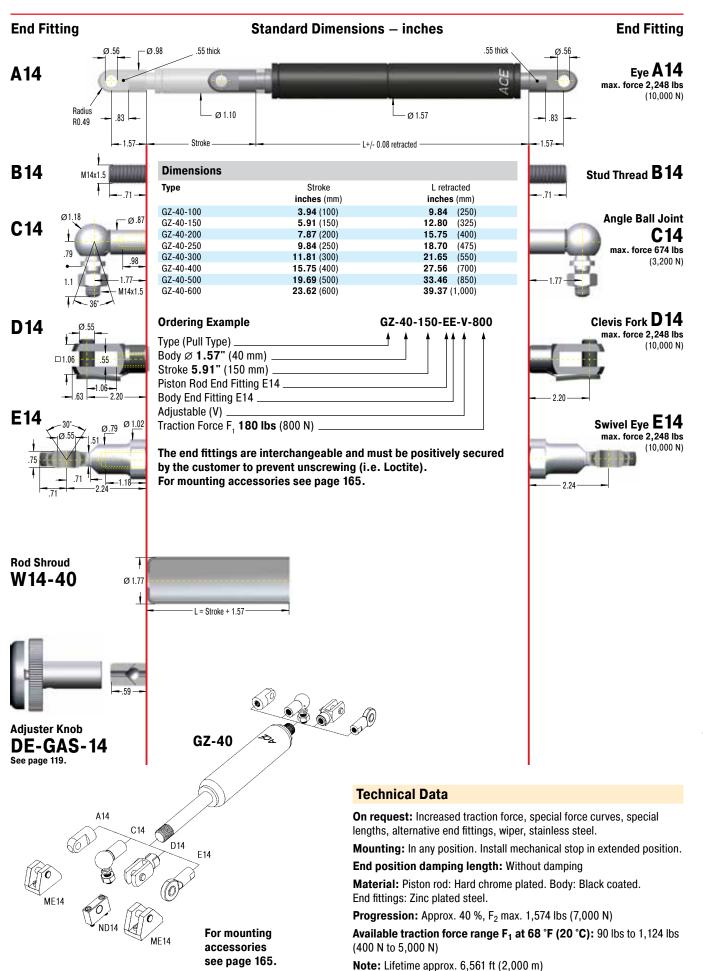
Traction (Pull) Forces 11 lbs to 34 lbs (50 N to 150 N) [when Piston Rod Extended up to 42 lbs (185 N)]

Traction (Pull) Forces 7 lbs to 67 lbs (30 N to 300 N) [when Piston Rod Extended up to 74 lbs (330 N)]

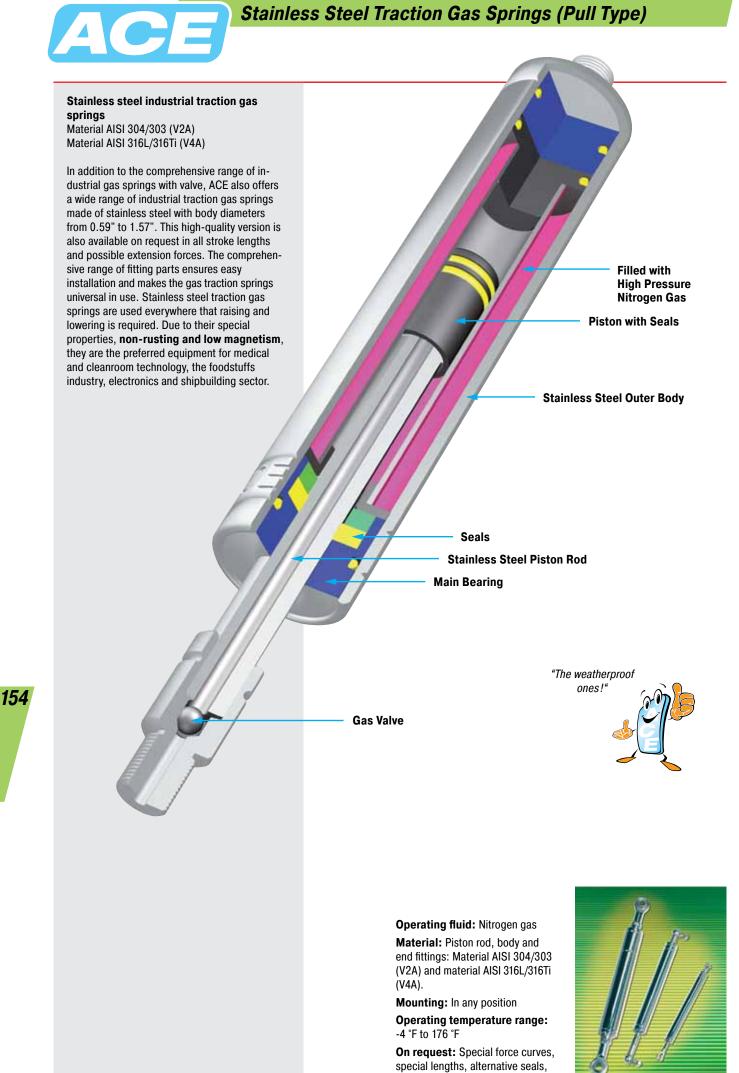


ssue 7.2014 Specifications subject to change

151



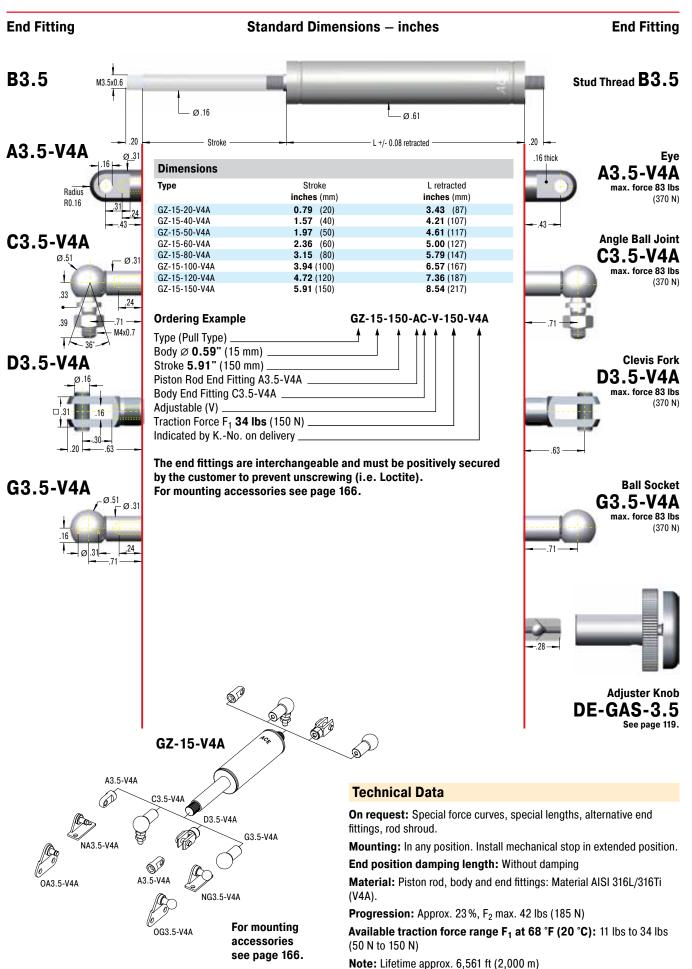
Traction (Pull) Forces 34 lbs to 270 lbs (150 N to 1,200 N) [when Piston Rod Extended up to 324 lbs (1,440 N)]


Industrial Traction Gas Springs GZ-40 (Pull Type)

Traction (Pull) Forces 90 lbs to 1,124 lbs (400 N to 5,000 N) [when Piston Rod Extended up to 1,574 (7,000 N)]

ssue 7.2014 Specifications subject to change

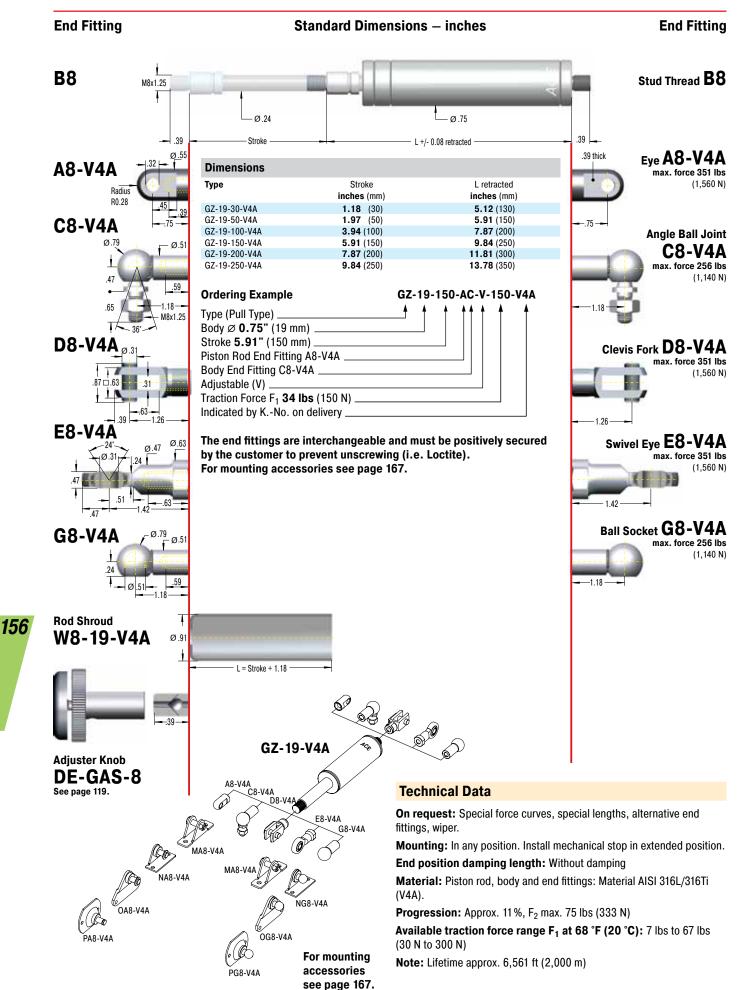
153


wiper.

ssue 7.2014 Specifications subject to change

Stainless Steel Traction Gas Springs GZ-15-V4A (Pull Type)

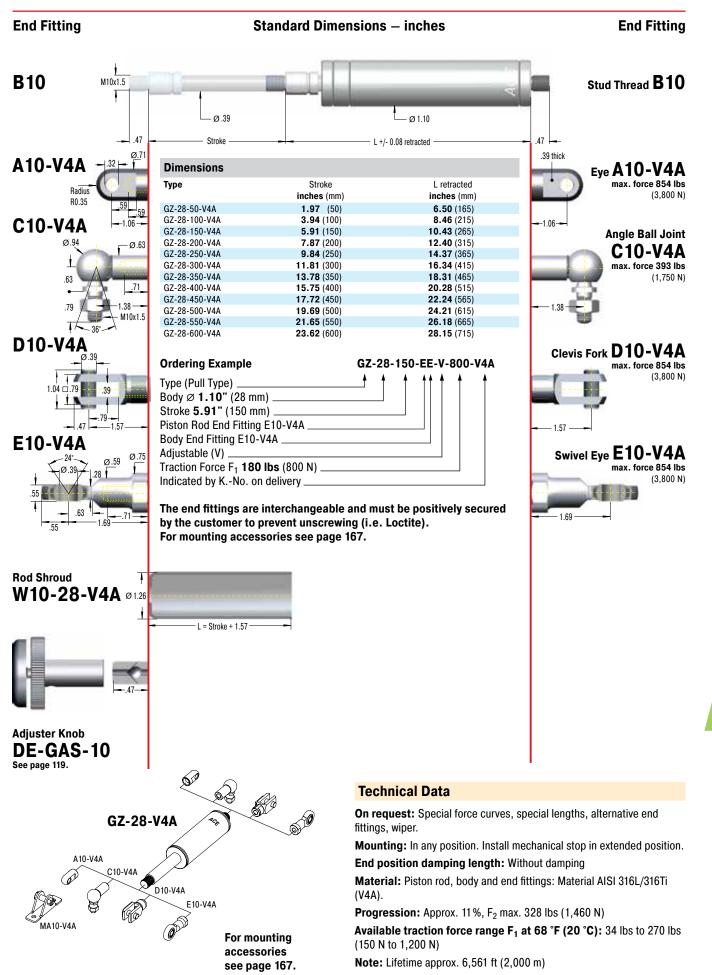
Traction (Pull) Forces 11 lbs to 34 lbs (50 N to 150 N) [when Piston Rod Extended up to 42 lbs (185 N)]


155

156

Stainless Steel Traction Gas Springs GZ-19-V4A (Pull Type)

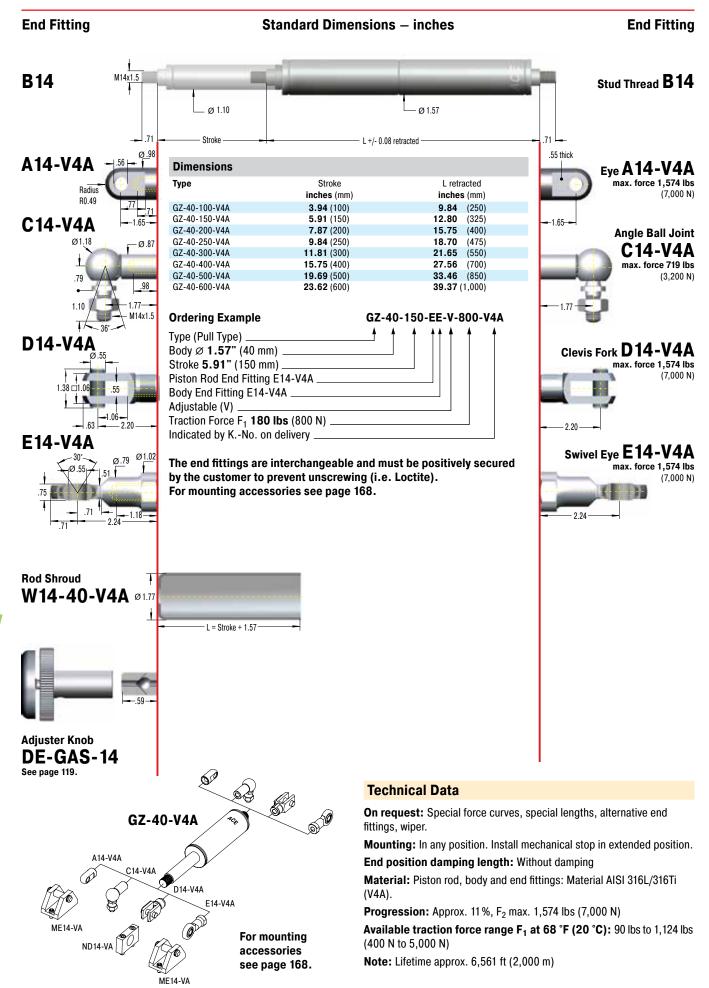
Traction (Pull) Forces 7 lbs to 67 lbs (30 N to 300 N) [when Piston Rod Extended up to 75 lbs (333 N)]



Issue 7.2014 Specifications subject to change

Stainless Steel Traction Gas Springs GZ-28-V4A (Pull Type)

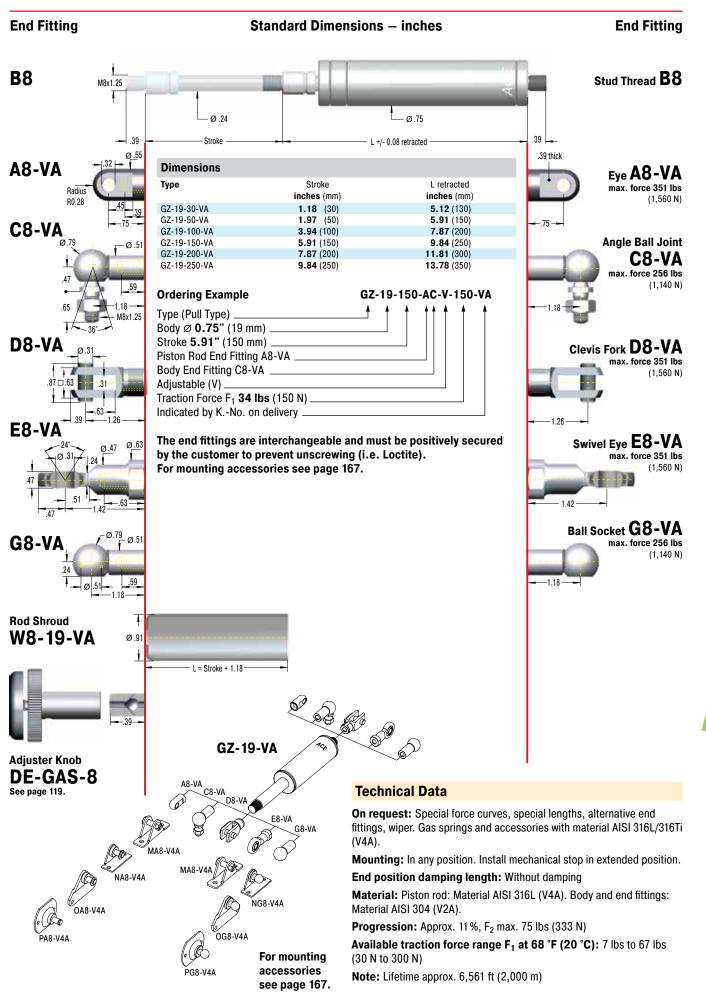
Traction (Pull) Forces 34 lbs to 270 lbs (150 N to 1,200 N) [when Piston Rod Extended up to 328 lbs (1,460 N)]


157

158

Stainless Steel Traction Gas Springs GZ-40-V4A (Pull Type)

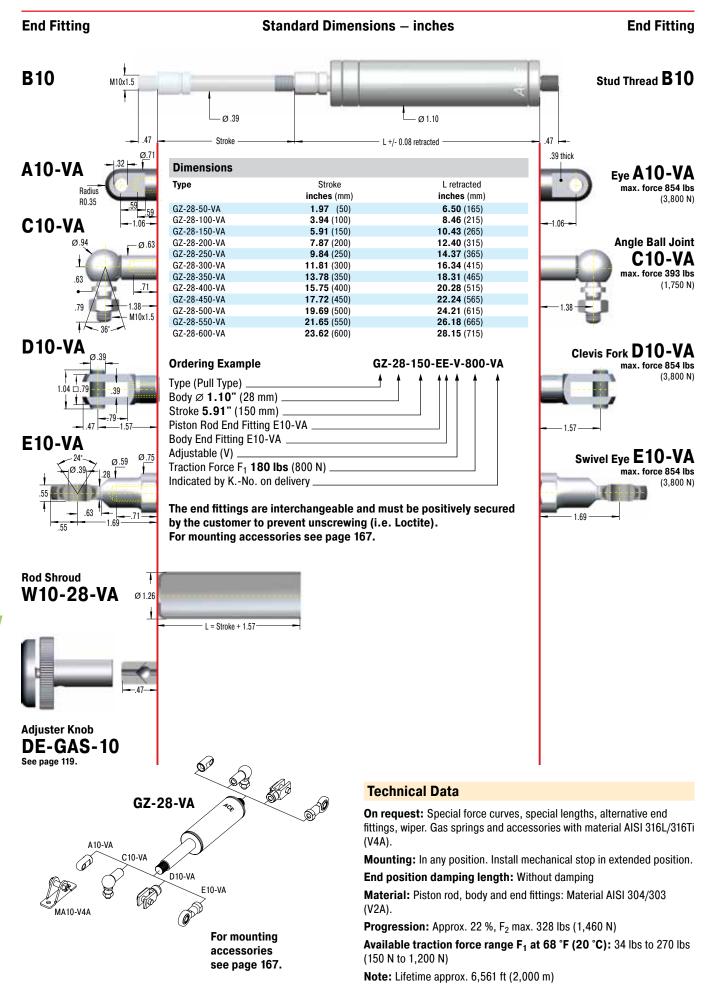
Traction (Pull) Forces 90 lbs to 1,124 lbs (400 N to 5,000 N) [when Piston Rod Extended up to 1,574 lbs (7,000 N)]



ssue 7.2014 Specifications subject to change

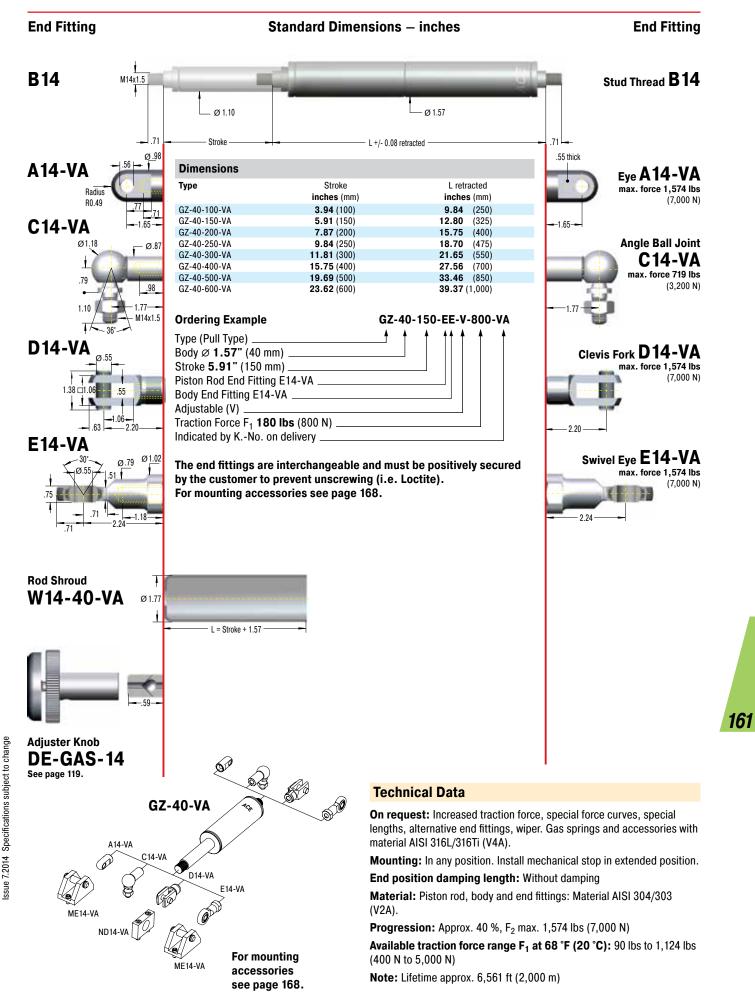
Stainless Steel Traction Gas Springs GZ-19-VA (Pull Type)

Traction (Pull) Forces 7 lbs to 67 lbs (30 N to 300 N) [when Piston Rod Extended up to 75 lbs (333 N)]



160

Stainless Steel Traction Gas Springs GZ-28-VA (Pull Type)

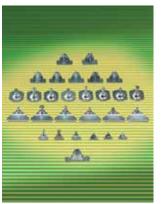

Traction (Pull) Forces 34 lbs to 270 lbs (150 N to 1,200 N) [when Piston Rod Extended up to 328 lbs (1,460 N)]

Stainless Steel Traction Gas Springs GZ-40-VA (Pull Type)

Traction (Pull) Forces 90 lbs to 1,124 lbs (400 N to 5,000 N) [when Piston Rod Extended up to 1,574 lbs (7,000 N)]

Gas Spring and Hydraulic Damper Accessories

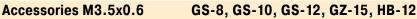
"Just drill 4 holes – ACE does

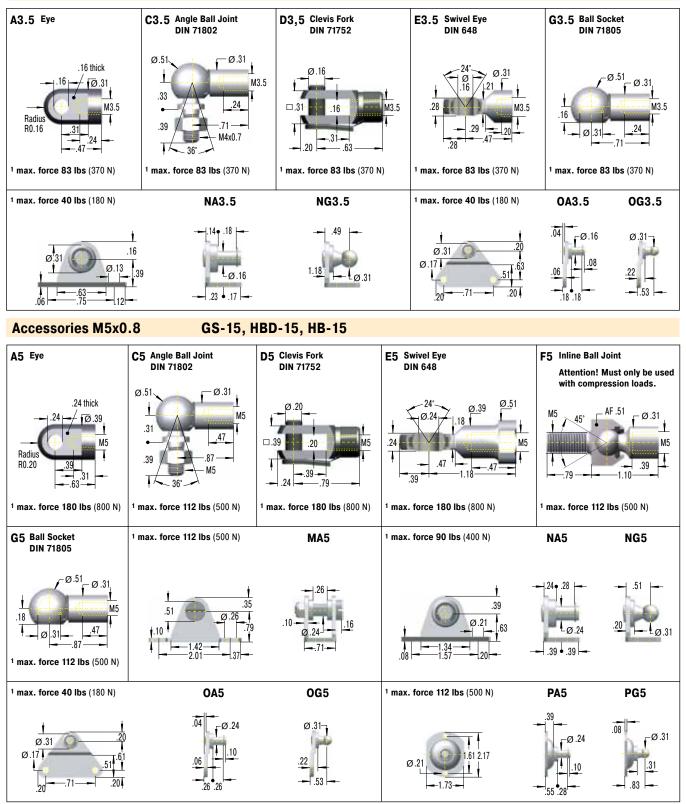

all the rest !"

End Fittings and Mounting Brackets

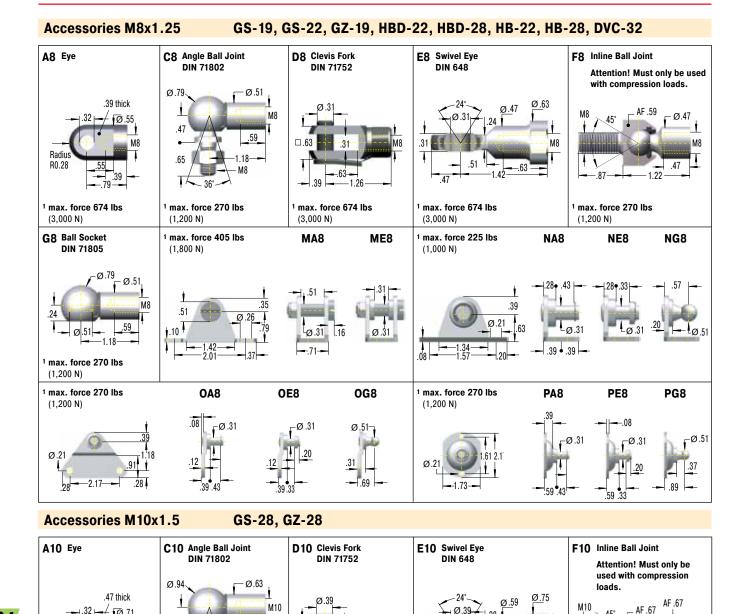
By taking advantage of the very extensive range of ACE end fittings and mounting brackets you can easily and simply install our gas springs and hydraulic dampers. You profit from the variety of **DIN Standard** end fittings such as swivel eyes, clevis forks, angle ball joints, inline ball joints, and complementary ball sockets. ACE also offers eye fittings made of wear-resistant steel to meet the higher specification requirements found in industrial applications. With over 30 different types available these mounting accessories provide an extensive range of combinations for optimum installations. With the ACE selection programme you can choose not only your ACE gas springs but also the ideal end fittings and mounting brackets for your individual application example.

The complete range of accessories are also available as individual components.


> Interchangeable Combinable



Ì


End Fittings and Mounting Brackets

¹ Attention! Max. static load in pounds (Lbs) and Newtons (N). Beware force increase during compression (progression) and observe max. force limit.

Radius

R0.35

(10,000 N)

(1,800 N)

51 .10

¹ max. force 270 lbs

2.17

.91

.28

(1,200 N)

Ø.21

Ø.63

bs

Ø.71

59

¹ max. force 2,248 lbs

¹ max. force 405 lbs

.63

.79

(1,800 N)

36

^I max. force 405 lbs

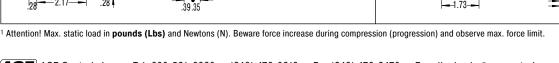
38

M10

MA10

.51

Ø.31 .16


-71-

OE10

Ø.39

.16

.08

39

-79

¹ max. force 2,248 lbs

ME10

Ø.39

(10,000 N)

M10 35 M10

.75

1.69

45

.98

(1,800 N)

¹ max. force 405 lbs

PE10

59

08

Ø.63

-Ø.39

M10

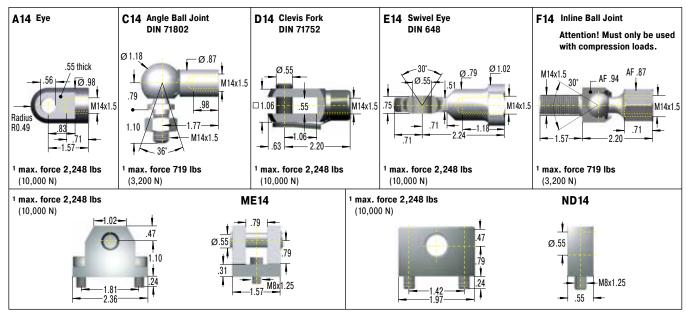
28

.63

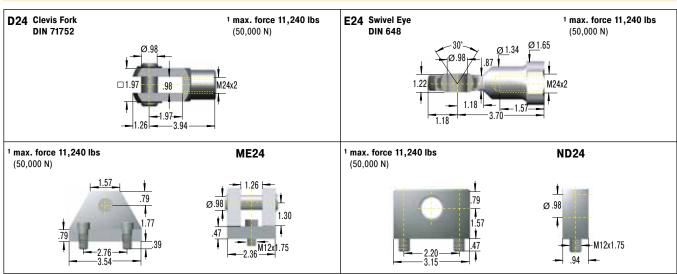
max. force 2,248 lbs

¹ max. force 270 lbs (1,200 N)

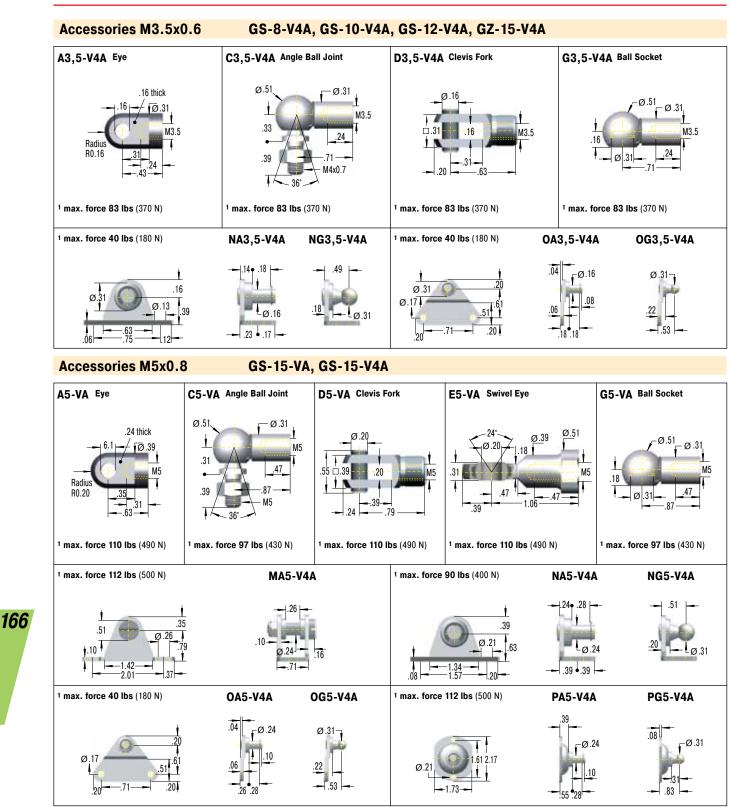
Ø


(10,000 N)

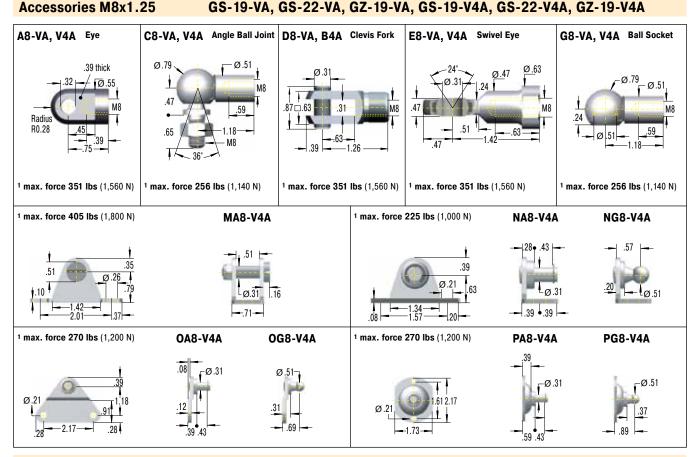
164 ACE ACE Controls Inc. • Tel. 800-521-3320 • (248) 476-0213 • Fax (248) 476-2470 • E-mail: shocks@acecontrols.com • www.acecontrols.com


End Fittings and Mounting Brackets

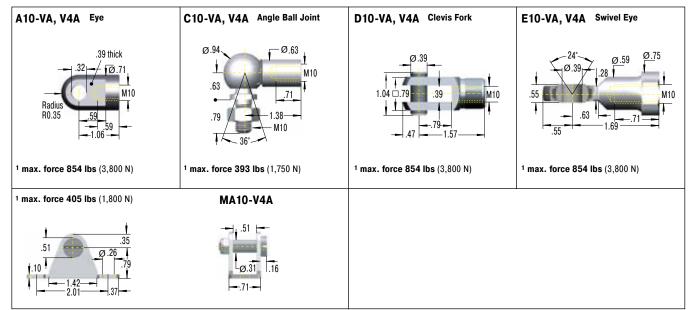
¹ Attention! Max. static load in pounds (Lbs) and Newtons (N). Beware force increase during compression (progression) and observe max. force limit.


Accessories M24x2 GS-70, HB-70

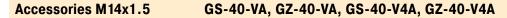
¹ Attention! Max. static load in pounds (Lbs) and Newtons (N). Beware force increase during compression (progression) and observe max. force limit.

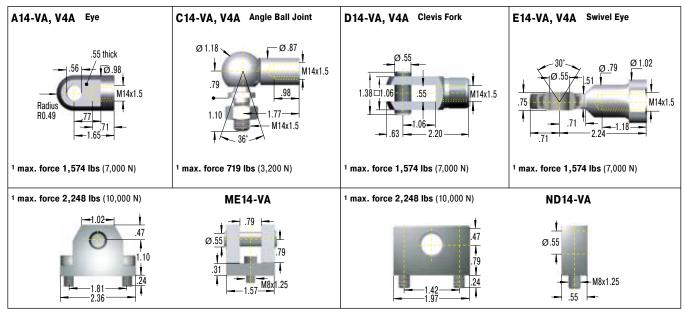


End Fittings and Mounting Brackets


¹ Attention! Max. static load in pounds (Lbs) and Newtons (N). Beware force increase during compression (progression) and observe max. force limit.

Accessories M10x1.5


GS-28-VA, GZ-28-VA, GS-28-V4A, GZ-28-V4A



167

1 Attention! Max. static load in pounds (Lbs) and Newtons (N). Beware force increase during compression (progression) and observe max. force limit.

¹ Attention! Max. static load in pounds (Lbs) and Newtons (N). Beware force increase during compression (progression) and observe max. force limit.

	Notes

Distributor Stock Locations

North and Central America

United States

Location	City	Distributor	Telephone		Internet
Alabama	Montgomery	Air Hydro Power	(866) 270-7041	(334) 215-2697	www.airhydropower.com
Arizona	Tempe	Barkley Playman Co. Inc.	(800) 525-8592	(480) 968-2594	www.barkleyfluidpower.com
Arkansas	Fort Smith	Franklin Electrofluid Co.	(479) 646-7448	(479) 646-2263	www.frankelectro.com
California	Costa Mesa Sant Jose	Clayton Controls Co. Nor-Cal Controls Inc.	(714) 556-9446 (408) 435-0400	(714) 241-9203 (408) 435-0410	www.claycon.com www.norcal4air.com
Colorado	Englewood	Advanced Air Products Co.	(801) 207-2400	(801) 207-2401	www.aapautomation.com
Connecticut	Bloomfield	Pearse- Bertram Company	(860) 242-7777	(860) 242-2673	www.pearse-bertram.com
Florida	Tampa	Gulf Controls Corp.	(813) 884-0471	(800) 282-9120	www.gulfcontrols.com
Georgia	Stone Mountain	TSI Solutions	(770) 879-3500	(770) 879-3511	www.4tsi.com
Illinois	Elk Grove Village	Fluid Power Engineering Co.	(847) 364-7455	(847) 364-7797	www.fpeinc.com
Indiana	Fort Wayne Indianapolis South Bend	Neff Group Distributors, Inc. Neff Group Distributors, Inc. Neff Group Distributors, Inc.	(260) 489-6007 (317) 841-9244 (574) 272-8282	(260) 489-6204 (317) 841-6480 (574) 277-3240	www.neffengineering.com www.neffengineering.com www.neffengineering.com
Kansas	Merriam	IBT Fluid Power Group	(913) 261-2125	(913) 677-7077	www.ibtinc.com
Kentucky	Louisville	Air Hydro Power - KY	(502) 451-1000	(502) 456-2837	www.airhydropower.com
Michigan	Farmington Hills Grandville Flint Grand Rapids	Exotic Automation & Supply Michigan Fluid Power Inc. Neff Group Distributors, Inc. Neff Group Distributors, Inc.	(248) 477-2122 (616) 538-5700 (810) 232-9350 (616) 554-1974	(248) 477-0427 (616) 538-0888 (810) 232-4169 (616) 554-1197	www.exoticautomation.com www.mifp.com www.neffengineering.com www.neffengineering.com
Minnesota	Eagan Eden Prairie	John Henry Foster Co. Braas Company	(651) 681-5738 (952) 937-8902	(651) 681-9368 (952) 937-6495	www.jhfoster.com www.braasco.com
Mississippi	Jackson	Franklin Electrofluid Co.	(601) 969-7022	(601) 354-0630	www.frankelectro.com
Missouri	Fenton	Air Specialists Worldwide	(636) 326-5900	(314) 298-0440	www.airspec.com
Nebraska	Omaha	Skarda Equipment Inc.	(316) 265-1329	(402) 345-1567	www.skarda.com
New Jersey	Maplewood	Airoyal Company	(973) 761-4150	(973) 761-5731	www.airoyal.biz
New York	Syracuse	Ralph W. Earl	(315) 454-4431	(315) 454-0977	www.rwearl.com
North Carolina	Concord	Automation Technology (CFT)	(704) 784-8101	(704) 784-8105	www.automationtechnologyinc.com
Ohio	Westlake Franklin	Fluidtrols Corp. Voelker Controls Co.	(440) 835-7010 (937) 433-8128	(440) 835-7041 (937) 433-6076	www.fluidtrols.com/ www.voelker-controls.com
Pennsylvania	Mainland York Houston Warrendale	Air Oil Systems RG Group PACCO - Pennsylvania Controls Huston Industrial Sales	(215) 721-9595 (717) 849-0320 (724) 746-3620 (724) 935-5666	(215) 721-7666 (877) 727-4332 (724) 746-3220 (724) 935-5551	www.airoil.com www.rg-group.com www.pacontrols-pacco.com www.hustonind.com
Tennessee	Nashville Memphis Nashville	Centro, Inc. Franklin Electrofluid Co. Franklin Electrofluid Co.	(615) 255-2220 (901) 362-7504 (615) 399-7700	(615) 255-2212 (901) 362-0343 (615) 399-3133	www.centromemphis.com www.frankelectro.com www.frankelectro.com
Texas	Houston Allen El Paso Laredo Houston	Atlas Industrial Supply Inc. Shepherd Controls & Assoc. Inc. Itech Automation Solutions, Inc. ITRADE INC. Southwestern Controls Div.	(813) 854-1370 (972) 727-7300 (915) 599-3022 (956) 242-7232 (713) 777-2626	(281) 591-6344 (972) 727-7363 (915)595-4952 (81) 8000-2001 (713) 988-1750	www.aishouston.com www.shepherdcontrols.com www.kopar.com.mx www.kopar.com.mx www.swcontrols.com
Virginia	Fredericksburg	Advanced Pneumatics Co.	(540) 898-4511	(540) 898-2067	www.advpneumatics.com
Washington	Vancouver	Warden Fluid Dynamics	(360) 696-4946	(360) 694-1768	www.wfdonline.com
Wisconsin	Mequon	Neff Group Distributors, Inc.	(262) 834-6300	(262) 834-6338	www.neffengineering.com

Distributor Stock Locations

North and Central America

Canada

Location	City	Distributor	Telephone		Internet
British Columbia	Burnaby	Peerless Engineering Sales Ltd.	(604) 659-4100	(604) 659-4121	www.peerlesse.com
Ontario	Stoney Creek	Vickers-Warnick Limited	(905) 643-1448	(905) 643-9785	www.vickers-warnick.com
Quebec	Lachine	Cowper Incorporated	(514) 637-6746	(514) 637-5055	www.copwer.ca

Central America

Location	City	Distributor	Telephone		Internet
Costa Rica	San José	Grupo Kopar	(81) 8000-2000	(81) 8000-2001	www.kopar.com.mx
Mexico	Monterrey	Grupo Kopar	(81) 8000-2000	(81) 8000-2001	www.kopar.com.mx
Puerto Rico	Caguas San Juan	P & C Company Rafael Benitez Carrillo, Inc./Applied Ind.	(787) 768-5033 (787) 725-7635	(787) 744-8306 (787) 723-1257	N/A http://web.applied.com/ base.cfm?page_id=2754

Sales Locations

USA

ACE CONTROLS INC. 23435 Industrial Park Dr., Farmington Hills MI 48335, USA Tel.: +1-248-476-0213 Fax: +1-248-476-2470 www.acecontrols.com

GERMANY

ACE STOSSDÄMPFER GMBH Albert-Einstein-Straße 15 40764 Langenfeld, Germany Tel.: +49-(0) 2173-9226-10 Fax: +49-(0) 2173-9226-19 www.ace-ace.de

SREAT BRITAIN

ACE CONTROLS INTERNATIONAL Unit 404 Easter Park, Haydock Lane Haydock, WA11 9TH, U.K. Tel.: +44-(0) 1942 727440 Fax: +44-(0) 1942 717273 www.ace-controls.co.uk

JAPAN ACE CONTROLS JAPAN L.L.C.

City Center Bldg. II 2fl 3-1-42, Chigasaki-minami, Tsuzuki-ku Yokohama, 224-0037, Japan Tel.: +81-(45) 945-0123 Fax: +81-(45) 945-0122 www.acecontrols.co.jp

ACE CONTROLS (SUZHOU) CO. LTD. Building 7 East, No. 369 Lushan Road, Suzhou Jiangsu Province 215129, P. R. China Tel.: +86-(512) 88606699 Fax: +86-(512) 88606698 www.acecontrols.cn.com

Distributors in other countries see pages 170 and 171.

